Skip to main content
Log in

Observations on the numerical stability of the Galerkin method

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

A simple factorization of the finite-dimensional Galerkin operators motivates a study of the numerical stability of a Galerkin procedure on the basis of its “potential stability” and the “conditioning” of its coordinate functions. Conditions sufficient for stability and conditions leading to instability are thereby identified. Numerical examples of stability and instability occurring in the application of the Galerkin method to boundary-integral equations arising in simple scattering problems are provided and discussed within this framework. Numerical instabilities reported by other authors are examined and explained from the same point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind(Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  2. J.-P. Aubin, Approximation of Elliptic Boundary-Value Problems(Wiley-Interscience, New York, 1972).

    Google Scholar 

  3. D. Braess, Finite Elements(Cambridge University Press, Cambridge, 1997), English translation of Finite Elemente(Springer, 1992), translated by L.L. Schumaker.

    Google Scholar 

  4. A.G. Dallas, On a boundary-data operator and generalized exterior Robin problems for the Helmholtz equation, NRL Report 9008, Naval Research Laboratory, Washington, DC (1987).

    Google Scholar 

  5. J.J. Dongarra, C.B. Moler, J.R. Bunch and G.W. Stewart, LINPACK Users' Guide(SIAM, Philadelphia, PA, 1979).

    Google Scholar 

  6. J. Giroire, Integral equation methods for exterior problems for the Helmholtz equation, Rapport Interne No. 40, Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France (1978).

    Google Scholar 

  7. S. Hildebrandt and E. Wienholtz, Constructive proofs of representation theorems in separable Hilbert space, Comm. Pure Appl. Math. 17 (1964) 369-373.

    MATH  MathSciNet  Google Scholar 

  8. G.C. Hsiao and R.E. Kleinman, Error analysis in numerical solution of acoustic integral equations, Internat. J. Numer. Methods Engrg. 37 (1994) 2921-2933.

    Article  MATH  MathSciNet  Google Scholar 

  9. G.C. Hsiao and W.L. Wendland, A finite element method for some integral equations of the first kind, J. Math. Anal. Appl. 58 (1977) 449-481.

    Article  MATH  MathSciNet  Google Scholar 

  10. G.C. Hsiao and W.L. Wendland, The Aubin-Nitsche lemma for integral equations, J. Integral Equations 3 (1981) 299-315.

    MATH  MathSciNet  Google Scholar 

  11. M.A. Krasnosel'ski(ie67-01), G.M. Vainikko, P.P. Zabreiko, Y.B. Rutitski(ie67-02) and V.Y. Stetsenko, Approximate Solutions of Operator Equations(Wolters-Noordhoff, Groningen, 1972).

  12. N. Limić, Galerkin-Petrov method for Helmholtz equation exterior problems, Glasnik Matematički 16 (1981) 245-260.

    Google Scholar 

  13. J.T. Marti, Introduction to Sobolev Spaces and Finite Element Solution of Elliptic Boundary Value Problems(Academic Press, London, 1986).

    Google Scholar 

  14. J.-C. Nedelec and J. Planchard, Une méthode variationnelle d'éléments finis pour la résolution numérique d'un problème extérieur dans R 3, RAIRO 7 R3 (1973) 105-129.

  15. W.L. Wendland, Boundary element methods and their asymptotic convergence, in: Theoretical Acoustics and Numerical Techniques, ed. P. Filippi (Springer, Wien, 1983) pp. 135-216.

    Google Scholar 

  16. W.L. Wendland, Private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dallas, A.G., Hsiao, G. & Kleinman, R. Observations on the numerical stability of the Galerkin method. Advances in Computational Mathematics 9, 37–67 (1998). https://doi.org/10.1023/A:1018941607627

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018941607627

Keywords

Navigation