Skip to main content
Log in

Classical and Quantum Mechanics on Information Spaces with Applications to Cognitive, Psychological, Social, and Anomalous Phenomena

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We use the system of p-adic numbers for the description of information processes. Basic objects of our models are so-called transformers of information, basic processes are information processes and statistics are information statistics (thus we present a model of information reality). The classical and quantum mechanical formalisms on information p-adic spaces are developed. It seems that classical and quantum mechanical models on p-adic information spaces can be applied for the investigation of flows of information in cognitive and social systems, since a p-adic metric gives a quite natural description of the ability to form associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. Bohr, Atomic Theory and the Description of Nature (Cambridge University Press, Cambridge, 1961).

    Google Scholar 

  2. E. Schrödinger, My View of the World (Cambridge University Press, Cambridge, 1964).

    Google Scholar 

  3. E. Schrödinger, Mind and Matter (Cambridge University Press, Cambrigde, 1958).

    Google Scholar 

  4. D. Bohm, Found. Phys. 1, 139–168 (1971).

    Google Scholar 

  5. E. P. Wigner, The Scientist Speculates, Good, I. J., ed. (Basic Books, New York, 1962), pp. 284–302.

    Google Scholar 

  6. B. d'Espagnat, Veiled Reality: An Analysis of Present-Day Quantum Mechanical Concepts (Addison-Wesley, Reading, MA, 1995).

    Google Scholar 

  7. B. d'Espagnat, Reality an Physics (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  8. G. Ryle, The Concept of Mind (Barnes & Noble, New York, 1949).

    Google Scholar 

  9. L. E. Rhine, Mind over Matter (Macmillan, New York, 1970).

    Google Scholar 

  10. D. O. Hebb, Essay on Mind (Lawrence Erlbaum Associates, Hillsdale, NJ, 1980).

    Google Scholar 

  11. J. R. Searle, Behav. Brain Sci. 3, 417–457 (1980).

    Google Scholar 

  12. H. Schmidt, Found. Phys. 8, 463–480 (1981).

    Google Scholar 

  13. H. Schmidt, Found. Phys. 12, 565–581 (1982)

    Google Scholar 

  14. R. G. Jahn and B. J. Dunne, Found. Phys. 16, 721–772 (1986).

    Google Scholar 

  15. B. J. Dunne, Y. H. Dobyns, R. G. Jahn, and R. D. Nelson, J. Sci. Explor. 8, 197–215 (1994).

    Google Scholar 

  16. D. L. Radin and R. D. Nelson, Found. Phys. 19, 1499–1514 (1989).

    Google Scholar 

  17. H. Smidt, J. Sci. Explor. 1, 1–14 (1987).

    Google Scholar 

  18. A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems an Biological Models (Kluwer Academic, Dordrecht, 1997).

    Google Scholar 

  19. A. Yu. Khrennikov, J. Theor. Biol. 193, 179–196 (1998).

    Google Scholar 

  20. S. Albeverio, A. Khrennikov, and P. E. Kloeden, Biosystems 49, 105–115 (1999).

    Google Scholar 

  21. W. Schwikhov, Ultrametric Calculus (Cambridge University Press, Cambridge, 1984).

    Google Scholar 

  22. I. V. Volovich, Class. Quant. Grav. 4, 83–87 (1987).

    Google Scholar 

  23. V. S. Vladimirov and I. V. Volovich, Comun. Math. Phys. 123, 659–676 (1989).

    Google Scholar 

  24. P. G. O. Freud and M. Olson, Phys. Lett. B 199, 186–190 (1987).

    Google Scholar 

  25. P. G. O. Freud and E. Witten, Phys. Lett. B 199, 191–195 (1987).

    Google Scholar 

  26. V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-adic Analysis and Mathematical Physics (World Scientific, Singapore, 1993).

    Google Scholar 

  27. P. H. Frampton and Y. Okada, Phys. Rev. Lett. B 60, 484–486 (1988).

    Google Scholar 

  28. I. Ya. Aref'eva, B. Dragovich, P. H. Frampton, and I. V. Volovich, Int. J. Modern Phys. A 6, 4341–4358 (1991).

    Google Scholar 

  29. A. Yu. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Kluwer Academic, Dordrecht, 1994).

    Google Scholar 

  30. A. Yu. Khrennikov, Uspekhi Mat. Nauk. 45, 79–110 (1990).

    Google Scholar 

  31. Yu. Manin, New Dimensions in Geometry, Springer Lecture Notes in Math., Vol. 1111 (Springer, New York, 1985), pp. 59–101.

    Google Scholar 

  32. B. Dragovic, in Proceedings 3rd A. Friedmann International Seminar on Gravitation and Cosmology, St. Peterburg, 1995.

  33. A. Yu. Khrennikov, Nuovo Cimento B 112, 555–560 (1996).

    Google Scholar 

  34. S. Albeverio and A. Yu. Khrennikov, J. Modern Phys. 10 (13/14), 1665–1673 (1996).

    Google Scholar 

  35. S. Albeverio and A. Yu. Khrennikov, J. Phys. A 29, 5515–5527 (1996).

    Google Scholar 

  36. R. Cianci and A. Yu. Khrennikov, Phys. Lett. B 328, 109–112 (1994).

    Google Scholar 

  37. A. Yu. Khrennikov, Found. Phys. 26 (8), 1066–1054 (1996).

    Google Scholar 

  38. A. Yu. Khrennikov, J. Math. Phys. 39 (3), 1388–1402 (1997).

    Google Scholar 

  39. A. Yu. Khrennikov, Phys. Lett. A 200, 119–223 (1995).

    Google Scholar 

  40. A. Yu. Khrennikov, Physica A 215, 577–587 (1995).

    Google Scholar 

  41. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1955).

    Google Scholar 

  42. M. Jammer, The Conceptual Development of Quantum Mechanics (McGraw-Hill, New York, 1966).

    Google Scholar 

  43. J. M. Jauch, Foundations of Quantum Mechanics (Addison-Wesley, Reading, MA, 1968).

    Google Scholar 

  44. L. E. Ballentine, Rev. Mod. Phys. 42, 358–381 (1970).

    Google Scholar 

  45. L. E. Ballentine, Quantum Mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1989).

    Google Scholar 

  46. A. Escassut, Analytic Elements in p-Adic Analysis (World Scientific, Singapore, 1995).

    Google Scholar 

  47. S. Freund, New Introduction Lectures on Psychoanalysis (Norton, New York, 1933).

    Google Scholar 

  48. A. N. Kolmogorov, Foundations of the Probability Theory (Chelsea, New York, 1956).

    Google Scholar 

  49. R. von Mises, The Mathematical Theory of Probability and Statistics (Academic, London, 1964).

    Google Scholar 

  50. A. Yu. Khrennikov, Teor. Mat. Fiz. 67 (3), 348–363 (1993).

    Google Scholar 

  51. R. P. Feynman, Quantum Implications: Essays in Honour of David Bohm, B. J. Hiley and F. D. Peat, eds. (Routledge & Kegan Paul, London, 1987), pp. 235–246.

    Google Scholar 

  52. W. Muckenheim, Phys. Rep. 133, 338–401 (1986).

    Google Scholar 

  53. P. A. M. Dirac, Proc. Roy. Soc. London A 180, 1–39 (1942).

    Google Scholar 

  54. A. Yu. Khrennikov, Int. J. Theor. Phys. 34 (12), 2423–2434 (1995).

    Google Scholar 

  55. A. Yu. Khrennikov, J. Math. Phys. 36 (12), 6625–6632 (1995).

    Google Scholar 

  56. E. B. Davies, Quantum Theory of Open Systems (Academic, London, 1976).

    Google Scholar 

  57. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982).

    Google Scholar 

  58. G. Ludwig, Foundations of Quantum Mechanics (Springer, Berlin, 1983).

    Google Scholar 

  59. A. Schild, Phys. Rev. 73, 414–425 (1948).

    Google Scholar 

  60. E. J. Hellund and K. Tanaka, Phys. Rev. 94, 192–208 (1954).

    Google Scholar 

  61. Yr. Ahmavaara, J. Math. Phys. 6, 87–93 (1965).

    Google Scholar 

  62. J. C. Eccles, The Understanding of the Brain (McGraw-Hill, New York, 1974).

    Google Scholar 

  63. D. J. Amit, Modeling of Brain Functions (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  64. J. D. Cohen, W. M. Perlstein, T. S. Braver, L. E. Nystrom, D. C. Noll, J. Jonides, and E. E. Smith, Nature 386, 604–608 (1997).

    Google Scholar 

  65. S. M. Courtney, L. G. Ungerleider, K. Keil, and J. V. Haxby, Nature 386, 608–611 (1997).

    Google Scholar 

  66. F. C. Hoppensteadt, An Introduction to the Mathematics of Neurons: Modeling in the Frequency Domains, 2nd ed. (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  67. D. Bohm and B; Hiley, The Undivided Universe, An Ontological Interpretation of Quantum Mechanics (Routledge & Kegan Paul, London, 1993).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khrennivov, A. Classical and Quantum Mechanics on Information Spaces with Applications to Cognitive, Psychological, Social, and Anomalous Phenomena. Foundations of Physics 29, 1065–1098 (1999). https://doi.org/10.1023/A:1018885632116

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018885632116

Keywords

Navigation