Skip to main content
Log in

Ignition of Crystalline Explosives

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

A physicomathematical model of ignition based on the model of an anisotropic medium with damage was proposed to study the mutual effect of the solid–state reaction and mechanical processes involved in the ignition of crystalline explosives. In the case of a hexagonal crystal, the model reduces to a coupled one–dimensional model of ignition with a wider range of parameters than that in the model of ignition of isotropic material. For example, the factor of coupling of the strain and temperature fields can now take negative values. Examples of numerical solution of the ignition problem are given for various particular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. F. Belyaev, V. K. Bobolev, A. I. Korotkov, et al., Deagration-to-Detonation Transition for Condensed System [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  2. S. Heister, “Landsbaum analysis of ballistic anomalies in solid rocket motors, ” AIAA Papers No. 85-1303 (1985).

  3. V. B. Librovich and A. L. Yarin, Effect of mechanical stresses on the burning rate of composite solid propellants, ” Fiz. Goreniya Vzryva, 21, No. 5, 58-63 (1985).

    Google Scholar 

  4. O. B. Kovalev, A. P. Petrov, and V. M. Fomin, “Combustion of composite solid propellant under static mechanical tensile stresses, ” Fiz. Goreniya Vzryva, 29, No. 4, 21-28 (1993).

    Google Scholar 

  5. M. A. Kohno, “A study of mechanical failure properties and their effects on combustion characteristics of APcomposite propellants, ” Report No. 598, The Inst. of Space and Astronautical Science, Tokyo (1981).

    Google Scholar 

  6. K. K. Kuo and D. E. Kooker, “Coupling between nonsteady burning and structure mechanics of solid propellant grains, ” in: L. De Luca and M. Summerfield (eds.), Progress in Astronautics and Aeronautics, Vol. 143: Nonsteady Burning and Combustion Stability of Solid Propellants, AIAA, Washington, DC (1992), SH-13, pp. 465-517.

    Google Scholar 

  7. _E. I. Maksimov and A. G. Merzhanov, “A model for combustion of nonvolatile explosives, ” Dokl. Akad. Nauk SSSR, 157, No. 2, 412-415 (1964).

    Google Scholar 

  8. B. I. Khaikin and A. G. Merzhanov, “Combustion of materials with a solid reaction layer, ” Dokl. Akad. Nauk SSSR, 173, No. 6, 1382-1385 (1967).

    Google Scholar 

  9. S. A. Abrukov, G. N. Marchenko, N. N. Masimov, et al. “Role of dispersion in the combustion of composite condensed systems, ” Fiz. Goreniya Vzryva, 12, No. 1, 26-31 (1976).

    Google Scholar 

  10. G. B. Manelis, “Modern problems of the kinetics of solid-state chemical reactions, ” in: Problems of Chemical Kinetics [in Russian], Nauka, Moscow (1979), pp. 226-231.

    Google Scholar 

  11. R. Brown, D. Dollimore, and A. Galwey, Reactions of Solids [Russian translation], Mir, Moscow (1983).

    Google Scholar 

  12. G. B. Manelis, A. V. Raevskii, L. G. Shcherbakov, et al., “Dislocation mechanism of chemical transformations in solids, ” in: Scientific Foundations of Materials Science [in Russian], Nauka, Moscow (1981), pp. 178-192.

    Google Scholar 

  13. D. Young, Decomposition of Solids, Pergamon Press, New York (1966).

    Google Scholar 

  14. F. P. Bowden and A. D. Yoffe, Fast Reactions of Solids, Eutterworths Sci. Bubl., London (1958).

    Google Scholar 

  15. K. K. Andreev, Thermal Decomposition and Combustion of Explosives [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  16. K. K. Andreev and V. V. Gorbunov, “Thermal stability of crystalline explosives, ” in: Theory of Explosives [in Russian], Oborongiz, Moscow (1963), pp. 20-33.

    Google Scholar 

  17. K. K. Andreev, Factors Responsible for Explosion upon Impact and Friction and Methods for Estimating the Sensitivity of Explosives to Mechanical Impacts [in Russian], Oborongiz, Moscow (1963), pp. 37-53.

    Google Scholar 

  18. V. V. Barelko, S. M. Ryabykh, and K. Sh. Karabukaev, “Gasless detonation in the explosive decomposition of heavy metal azides, ” Khim. Fiz., 12, No. 2, 274-282 (1993).

    Google Scholar 

  19. S. M. Ryabukh, L. T. Bugaenko, and V. V. Barelko, “Detonation of priming explosives as a topochemical reaction, ” in: Chemical Physics of Combustion and Explosion [in Russian], Vol. 2, Chernogolovka (1996), pp. 75-77.

    Google Scholar 

  20. M. M. Chaudhry, “Photographic evidence for ignition by friction in a deagrating explosive single crystal, ” J. Phys., D: Appl. Phys., 25, 552-557 (1992).

    Google Scholar 

  21. C. M. Pereira adn M. M. Chaudhry, “Optical and raman studies of explosives under varying pressure and temperature, ”, in: Shock Waves in Condensed Matter, Elsevier, Amsterdam (1988), pp. 481-484.

    Google Scholar 

  22. V. C. Jyoyhi Bhasu, M. M. Chaudhry, and J. Housden, “Rapid mass spectrometric analysis of fragments of trinitrotoluene, picric acid and tetryl generated by laser irradiation, ” J. Mater. Sci., 26, 2199-2207 (1991).

    Google Scholar 

  23. A. G. Knyazeva, Introduction to Locally-Equilibrium Thermodynamics of Physicochemical Transformations in Deformable Media [in Russian], Tomsk (1996).

  24. V. Novacki, Theory of Elasticity [Russian translation], Mir, Moscow (1975).

    Google Scholar 

  25. I. Gyarmati, Non-Equilibrium Thermodynamics. Field Theory and Variational Principles, Springer-Verlag, Berlin-Heidelberg-New York (1970).

    Google Scholar 

  26. S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962).

  27. Yu. I. Sirotin and M. P. Shaskol'skaya, Foundations of Crystal Physics [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  28. T. D. Shermergor, Theory of Elasticity of Inhomogeneous Media [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  29. A. G. Knyazeva and V. E. Zarko, “Modeling of combustion of energetic materials with chemically induced mechanical processes, ” J. Propuls. Power, No. 4, 791-803 (1995).

    Google Scholar 

  30. A. G. Knyazeva and V. E. Zarko, “The effect of chemically induced stresses and deformations in the ignition of solid propellants, ” in: K. K. Kuo (ed.), Challenges in Propellants and Combustion. 100 Years after Nobel, Begell House, New York-Wallingford (U.K.) (1997), pp. 762-773.

    Google Scholar 

  31. A. G. Knyazeva, “Coupled models of physicochemical transformations in solid media taking into account deformation and fracture, ” Doct. Dissertation in Phys.-Math. Sci., Inst. of Strength Phys. and Materials Sci., Sib. Div., Russian Acad. of Sci., Tomsk (1996).

    Google Scholar 

  32. V. R. Regel', A. I. Slutsker, and É. Z. Tomashevskii, Kinetic Nature of Strength of Solids [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  33. A. P. Chupakhin, A. A. Sidel'nikov, and V. V. Boldyrev, “Effect of mechanical stresses resulting from solidstate chemical transformations on kinetics. General approach, ” Izv. Sib. Otd. Ross. Akad. Nauk, Ser. Khim. Nauki, No. 6, 31-38 (1985).

  34. A. G. Knyazeva, “Ignition of a condensed material by a hot plate with allowance for thermal stresses, ” Fiz. Goreniya Vzryva, 28, No. 1, 13-18 (1992).

    Google Scholar 

  35. V. N. Vilyunov and V. E. Zarko, Ignition of Solids, Elsevier, Amsterdam-Oxford-New York, Tokyo (1989).

    Google Scholar 

  36. F. A. Baum, L. P. Orlenko, K. P. Stanyukovich, R. P. Chelyshev, and B. I. Shekhter (eds.), Physics of Explosion [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  37. A. G. Knayzeva and V. T. Kuznetsov, “Fracture of the surface of nitroglycerin gunpowder during its ignition at various initial temperatures, ” Fiz. Goreniya Vzryva, 31, No. 4, 10-19 (1995).

    Google Scholar 

  38. A. G. Knayzeva, “Ignition of finite bodies, ” in: Mathematical Models and Research Methods, Abstracts of Int. Conf. (August 18-24, 1999), Krasnoyarsk (1999), pp. 121.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knyazeva, A.G. Ignition of Crystalline Explosives. Combustion, Explosion, and Shock Waves 37, 331–340 (2001). https://doi.org/10.1023/A:1017536225504

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017536225504

Keywords

Navigation