Skip to main content
Log in

Percutaneous Absorption of Biologically-Active Interferon-gamma in a Human Skin Graft-Nude Mouse Model

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Topical delivery has been suggested to reduce systemic side effects while targeting cytokines for the treatment of certain skin conditions. Liposomes have been proposed as an enhancing agent for such a delivery. We have tested the potential of liposomes to augment the uptake of biologically active recombinant human interferon-gamma (rhIFN-γ) into human skin lacking adnexa in an in vivo model.

Methods. Stable grafts of human skin on nude mice were used to test aqueous formulations of rhIFN-γ containing or lacking liposomes composed of phosphatidylcholine and cholesterol. Transport of rhIFN-γ was assessed by monitoring the stimulated expression of intercellular adhesion molecule-1 (ICAM-1) by keratinocytes by light-level immunomicroscopy and ELISA.

Results. A single application of liposomal rhIFN-γ increased ICAM-1 levels in the epidermal basal and suprabasal cell layers of grafts. Continued application maintained this response. An aqueous formulation of rhIFN-γ or liposomes alone applied to grafts failed to induce an ICAM-1 response. Preliminary studies suggested that at least some of the lipids applied in the liposomal formulation also entered the epidermis.

Conclusions. Using a nude mouse-human skin graft model lacking adnexa, we have demonstrated that a liposomal formulation can augment the uptake of a biologically-active human cytokine, rhIFN-γ, into the epidermis of viable human skin. The therapeutic application of topical IFN-γ delivery remains to be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Monash. Location of a Superficial Barrier to Skin Penetration. J. Invest. Dermatol. 29:367–376 (1957).

    Google Scholar 

  2. C. Cullander and R. H. Guy. Routes of Delivery: Case Studies. Transdermal Delivery of Peptides and Proteins. Adv. Drug Delivery Reviews 8:291–329 (1992).

    Google Scholar 

  3. P. M. Elias and D. S. Friend. The Permeability Barrier in Mammalian Epidermis. J. Cell Biol. 65:180–191 (1975).

    Google Scholar 

  4. R. O. Potts and M. L. Francoeur. The Influence of Stratum Corneum Morphology on Water Permeability. J. Invest. Dermatol. 96:495–499 (1991).

    Google Scholar 

  5. A. C. Williams and B. W. Barry. Skin Absorption Enhancers. Crit. Rev. Therap. Drug Carrier Syst. 9:305–355 (1992).

    Google Scholar 

  6. M. C. Manning, K. Patel, and R. T. Borchardt. Stability of Protein Pharmaceutics. Pharm. Res. 6:903–918 (1989).

    Google Scholar 

  7. T.-C. Wang, J. and M. A. Hanson. Parenteral Formulations or Proteins and Peptides: Stability and Stabilizers. J. Parenteral Sci. Technol. 42:S3–S26 (1988).

    Google Scholar 

  8. M. Mezei and V. Gulasekharam. Liposomes—A Selective Drug Delivery System for the Topical Route of Administration. J. Pharm. Pharmacol. 34:473–272 (1982).

    Google Scholar 

  9. J. du Pleiss, K. Egbaria, C. Ramachandran, and N. Weiner. Topical delivery of liposomally encapsulated gamma-interferon. Antiviral Research 18:259–265 (1992).

    Google Scholar 

  10. M. Weiner, N. Williams, G. Birch, C. Ramachandran, C. Shipmanjr, and G. Flynn. Topical Delivery of Liposomal Encapsulated Interferon Evaluated in a Cutaneous Herpes Guinea Pig Model. Antimicrob. Agents Chemother. 18:212–224 (1989).

    Google Scholar 

  11. S. M. Short, W. Rubas, B. D. Paasch, and R. J. Mrsny. Transport of Biologically Active Interferon-gamma Across Human Skin In Vitro. Pharm. Res. 12:1140–1145 (1995).

    Google Scholar 

  12. J. N. W. N. Barker, M. H. Allen, and D. M. MacDonald. The Effect of In Vivo Interferon-γ on the Distribution of LFA-1 and ICAM-1 in Normal Human Skin. J. Invest. Dermatol. 93:439–442 (1989).

    Google Scholar 

  13. S. T. Boyce, T. J. Foreman, K. B. English, J. F. Stayner, M. L. Cooper, S. Sakabu, and J. F. Hansbrough. Skin Wound Closure in Athymic Mice with Cultured Human Cells, Biopolymers, and Growth Factors. Surgery 110:866–876 (1991).

    Google Scholar 

  14. M. L. Cooper, R. L. Spielvogel, J. F. Hansbrough, S. T. Boyce, and D. H. Frank. Reconstitution of the Histologic Characteristics of a Giant Congenital Nevomelanocytic Nevus Employing the Athymic Mouse and a Cultures Skin Substitute. J. Invest. Dermatol. 97:649–658 (1991).

    Google Scholar 

  15. D. E. Tacha and L. A. McKinney. Casein Reduces Nonspecific Background Staining in Immunolabeling Techniques. J. Histotechnology 15:127–132 (1992).

    Google Scholar 

  16. R. Harning, E. Mainolfi, J.-C. Bystryn, M. Henn, V. J. Merluzzi, and R. Rothlein. Serum Levels of Circulating Intercellular Adhesion Molecule 1 in Human Malignant Melanoma. Cancer Research 51:5003–5005 (1991).

    Google Scholar 

  17. D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. 11:431–441 (1963).

    Google Scholar 

  18. R. P. Ekins and P. R. Edwards. The precision profile: its use in assay design, assessment, and quality control, in Immunoassays for Clinical Chemistry, W. M. Hunter, and J. E. T. Corrie, Editors. 1983, Churchill Livingston: Edinburgh.

    Google Scholar 

  19. S. T. Boyce, E. E. Medrano, Z. Abdel-Malek, A. P. Supp, J. M. Dodick, J. J. Nordlund, and G. D. Warden. Pigmentation and Inhibition of Wound Contraction by Cultured Skin Substitutes with Adult Melanocytes After Transplantation to Athymic Mice. J. Invest. Dermatol. 100:360–365 (1993).

    Google Scholar 

  20. G. Krueger, D. Manning, J. Malouf, and B. Ogden. Long-Term Maintenance of Psoriatic Human Skin on Congenitally Athymic (Nude) Mice. J. Invest. Dermatol. 64:307–312 (1975).

    Google Scholar 

  21. A. Gilhar, A. Etzioni, B. Assy, and S. Eidelman. Response of Grafts from Patients with Alopecia Areata Transplanted onto Nude Mice, to Administration of Interferon-γ. Clin. Immunol. Immunopath. 66:120–126 (1993).

    Google Scholar 

  22. D. B. Guzek, A. H. Kennedy, S. C. McNeill, E. Wakshull, and R. O. Potts. Transdermal drug transport and metabolism. I. Comparison of in vitro and in vivo results. Pharm. Res. 6:33–39 (1989).

    Google Scholar 

  23. K. L. Moore. The Developing Human. 3rd ed. 1982, Philadelphia: W.B. Saunders Co. 432–436.

    Google Scholar 

  24. L. Lieb, C. Ramachandran, K. Egbaria, and N. Weiner. Topical Delivery Enhancement with Multilamellar Liposomes into Pilosebaceous Units: I. In Vitro Evaluation Using Fluorescent Techniques with the Hamster Ear Model. J. Invest. Dermatol. 99:108–113 (1992).

    Google Scholar 

  25. M. Démarchez, D. J. Hartmann, M. Régnier, and D. Asselineau. Role of Fibroblasts in Dermal Vascularization and Remodeling of Reconstructed Human Skin after Transplantation onto the Nude Mouse. Transplantation 54:317–326 (1992).

    Google Scholar 

  26. S. Pellegrini and C. Schindler. Early Events in Signalling by Interferons. Trends in Biological Sciences 18:338–342 (1993).

    Google Scholar 

  27. Y. Teraki, N. Moriya, and T. Shiohara. Drug-Induced Expression of Intercellular Adhesion Molecule-1 on Lesional Keratinocytes in Fixed Drug Eruption. Am. J. Pathol. 145:550–560 (1994).

    Google Scholar 

  28. M. Kashihara-Sawami and D. A. Norris. The State of Differentiation of Cultured Human Keratinocytes Determines the Level of Intercellular Adhesion Molecule-1 (ICAM-1) Expression Induced by γ Interferon. J. Invest. Dermatol. 98:741–747 (1992).

    Google Scholar 

  29. L. A. Cornelius, J. T. Taylor, K. Degitz, L.-J. Li, T. J. Lawley, and S. W. Caughman. A 5′ Portion of the ICAM-1 Gene Confers Tissue-Specific Differential Expression Levels and Cytokine Responsiveness. J. Invest. Dermatol. 100:753–758. (1993).

    Google Scholar 

  30. A. Scheynius, J. Fransson, C. Johansson, H. Hammar, B. Baker, L. Fry, and H. Valdimarsson. Expression of Interferon-Gamma Receptors in Normal and Psoriatic Skin. J. Invest. Dermatol. 98:255–258 (1992).

    Google Scholar 

  31. L. C. Wood, S. M. Jackson, P. M. Elias, C. Grunfeld, and K. R. Feingold. Cutaneous Terrier Perturbation Stimulates Cytokine Production in the Epidermis of Mice. J. Clin. Invest. 90:482–487 (1992).

    Google Scholar 

  32. K. Harada, T. Murakami, N. Yata, and S. Yamamoto. Role of Intercellular Lipids in Stratum Corneum in Percutaneous Permeation of Drugs. J. Invest. Dermatol. 99:278–282 (1992).

    Google Scholar 

  33. D. L. Sackett and J. Wolff. Nile Red As a Polarity-Sensitive Fluorescent Probe of Hydrophobic Protein Surfaces. Anal. Biochem. 167:228–234 (1987).

    Google Scholar 

  34. O. Simonetti, A. J. Hoogstraate, W. Bialik, J. A. Kempenaar, H. G. J. Schrijvers, H. E. Boddé, and M. Ponec. Visualization of Diffusion Pathways Across the Stratum Corneum of Native and In-Vitro-Reconstructed Epidermis by Confocal Laser Scanning Microscopy. Arch. Dermatol. Res. 287:465–473 (1995).

    Google Scholar 

  35. J. Lasch, R. Laub, and W. Wohlrab. How Deep do Intact Liposomes Penetrate into Human Skin? J. Controlled Rel. 18:55–58 (1991).

    Google Scholar 

  36. W. Gehring, M. Ghyczy, J. Gareiss, and M. Gloor. The Influence on Skin Penetration by Dithranol Formulated in Phospholipid Solutions and Phospholipid Liposomes. Eur. J. Pharm. Biopharm. 41:140–142 (1995).

    Google Scholar 

  37. A. L. Balsari, D. Morelli, S. Ménard, U. Veronesi, and M. I. Colnaghi. Protection Against Doxorubicin-Induced Alopecia in Rats by Liposome-Entrapped Monoclonal Antibodies. FASEB J. 8:226–230 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Short, S.M., Paasch, B.D., Turner, J.H. et al. Percutaneous Absorption of Biologically-Active Interferon-gamma in a Human Skin Graft-Nude Mouse Model. Pharm Res 13, 1020–1027 (1996). https://doi.org/10.1023/A:1016050422634

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016050422634

Navigation