Skip to main content
Log in

Towards an ecological understanding of biological nitrogen fixation

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

N limitation to primary production and other ecosystem processes is widespread. To understand the causes and distribution of N limitation, we must understand the controls of biological N fixation. The physiology of this process is reasonably well characterized, but our understanding of ecological controls is sparse, except in a few cultivated ecosystems. We review information on the ecological controls of N fixation in free-living cyanobacteria, vascular plant symbioses, and heterotrophic bacteria, with a view toward developing improved conceptual and simulation models of ecological controls of biological N fixation.

A model (Howarth et al. 1999) of cyanobacterial fixation in lakes (where N fixation generally increases substantially when N:P ratios are low) versus estuaries (where planktonic N fixation is rare regardless of N:P ratios) concludes that an interaction of trace-element limitation and zooplankton grazing could constrain cyanobacteria in estuaries and so sustain N limitation. Similarly. a model of symbiotic N fixation on land (Vitousek & Field 1999) suggests that shade intolerance, P limitation, and grazing on N-rich plant tissues could suppress symbiotic N fixers in late-successional forest ecosystems. This congruence of results raises the question – why do late-successional tropical forests often contain many potentially N-fixing canopy legumes, while N fixers are absent from most late-successional temperate and boreal forests? We suggest that relatively high N availability in lowland tropical forests permits legumes to maintain an N-demanding lifestyle (McKey 1994) without always being required to pay the costs of fixing N.

Overall, both the few simulation models and the more-numerous conceptual models of ecological controls of biological N fixation suggest that there are substantial common features across N-fixing organisms and ecosystems. Despite the many groups of organisms capable of fixing N, and the very different ecosystems in which the process is important, we suggest that these common controls provide a foundation for the development of regional and global models that incorporate ecological controls of biological N fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber JD, McDowell W, Nadelhoffer K, Magill A, Berntson G, KamakeaM, McNulty S, Currie W, Rustad L & Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems: hypothesis revisited. Bioscience 48: 921–934

    Google Scholar 

  • Allen O & Allen E (1981) The Leguminosae: A Source Book of Characteristics, Uses, and Nodulation. University of Wisconsin Press, Madison, WI

    Google Scholar 

  • Allen S, Raven JA & Sprent JI (1988) The role of long-distance transport in intracellular pH regulation in Phaseolus vulgaris grown with ammonium or nitrate as nitrogen source, or nodulated.J. Exp. Bot. 39: 513–528

    Google Scholar 

  • Allos HF & Bartholomew WV (1959) Replacement of symbiotic fixation by available nitrogen. Soil Sci. 87: 61–66

    Google Scholar 

  • Anderson DC, Harper KT & Holmgren RC (1982) Factors influencing development of cryptogamic soil crusts in Utah deserts. J.Range Manage. 35: 180–185

    Google Scholar 

  • Arnone JA III & Gordon JC (1990) Effect of nodulation, nitrogen fixation and CO2 enrichment on the physiology, growth and dry mass allocation of seedlings of Alnus rubra Bong. New Phytol. 116: 55–66

    Google Scholar 

  • Austin AT & Vitousek PM (1998) Nutrient dynamics on a precipitation gradient in Hawai'I. Oecologia 113: 519–529

    Google Scholar 

  • Barber SA (1984) Soil Nutrient Bioavailability: A Mechanistic Approach. JohnWiley & Sons, New York

    Google Scholar 

  • Bebout BM, Fitzpatrick MW & Paerl HW (1993) Identification of the sources of energy for nitrogen fixation and physiological characterization of nitrogen-fixing members of a marine microbial mat community.Appl. Environ. Microb. 59: 1495–1503

    Google Scholar 

  • Bebout BM, Paerl HW, Crocker KM & Prufert LE (1987) Diel interactions of oxygenic photosynthesis and N2 fixation (acetylene reduction) in a marine microbial mat community. Appl. Environ. Microb. 53: 2353–2362

    Google Scholar 

  • Belnap J, Harper KT & Warren SD (1994) Surface disturbance of cryptobiotic soil crusts: nitrogenase activity, chlorophyll content, and chlorophyll degradation. Arid Soil Res.Rehab. 3: 1–8

    Google Scholar 

  • Bergmann MA & Welch HE (1990) Nitrogen fixation by epilithic periphyton in small arctic lakes in response to experimental nitrogen and phosphorus fertilization.Can. J. Fish. Aquat. Sci. 47: 1545–1550

    Google Scholar 

  • Beymer RJ & Klopatek JM (1992) Effects of grazing on cryptogamic crusts in pinyon-juniper woodlands in Grand Canyon National Park. Am. Midl. Nat. 127: 139–148

    Google Scholar 

  • Binkley D & Ryan M (1998) Net primary production and nutrient cycling in replicated stands of Eucalyptus saligna and Albizzia facultaria. Forest Ecol. Manag. 112: 79–85

    Google Scholar 

  • Bloom AJ, Chapin FS III & Mooney HA (1985) Resource limitation in plants, an economic analogy. Annu. Rev. Ecol. Syst. 16: 363–392

    Google Scholar 

  • Boring LR, Swank WT, Waide JB & Henderson GS (1988) Sources, fates, and impacts of nitrogen inputs to terrestrial ecosystem: review and synthesis. Biogeochemistry 6: 119–159

    Google Scholar 

  • Campbell JL, Hornbeck JW, McDowell WH, Buso DC, Shaley JB & Likens GE (2000) Dissolved organic nitrogen budgets for upland, forested ecosystems in New England. Biogeochemistry 49: 123–142

    Google Scholar 

  • Carpenter RC, Hackney JM & Adey WH (1991) Measurements of primary productivity and nitrogenase activity of coral reef algae in a chamber incorporating oscillatory flow. Limnol.Oceanogr. 36: 40–49

    Google Scholar 

  • Cassman KG, Whitney AS & Stockinger (1980) Root growth and dry matter distribution of soybean as affected by phosphorus stress, nodulation and nitrogen source. Crop Sci. 20:239–244

    Google Scholar 

  • Cassman KG, Singleton PW & Lindquist BA (1993) Input/output analysis of the cumulative soybean response to phosphorus on an Ultisol. Field Crop Res. 34: 23–36

    Google Scholar 

  • Cassman KG, De Datta SK, Olk DC, Alcantara JM, Samson MI, Descalsota JP & Dizon MA (1995) Yield decline and the nitrogen economy of long-term experiments on continuous, irrigated rice systems in the tropics. In: Lal R & Stewart BA (Eds) Soil Management: Experimental Basis for Sustainability and Environmental Quality (pp 181–222). Lewis/CRC Publishers, Boca Raton

    Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM, Huebert BJ & Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397: 491–497

    Google Scholar 

  • Chapin DM, Bliss LC & Bledsoe LJ (1991) Environmental regulation of nitrogen fixation in a high arctic lowland ecosystem.Can. J. Bot. 69: 2744–2755

    Google Scholar 

  • Chapin FS III, Bloom AJ, Field CB & Waring RH (1987) Plant responses to multiple environmental factors. Bioscience 37: 49–57

    Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, VonFischer JC, Elseroad A & Wasson MF. (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem. Cycles 13: 623–645

    Google Scholar 

  • Coxson DS & Kershaw KA (1983) Rehydration response of nitrogenase activity and carbon fixation in terrestrial Nostoc commune from Stipa-Bouteloa grassland. Can. J. Bot. 61: 2658–2668

    Google Scholar 

  • Crawford CS & Gosz JR (1982) Desert ecosystems: Their resources in space and time. Environ. Conserv. 9: 181–195

    Google Scholar 

  • Crews TE (1993) Phosphorus regulation of nitrogen fixation in a traditional Mexican agroecosystem. Biogeochemistry 21: 141–166

    Google Scholar 

  • Crews TE (1999) The presence of nitrogen fixing legumes in terrestrial communities: evolutionary versus ecological considerations. Biogeochemistry 46: 233–246

    Google Scholar 

  • Crews TE, Kurina LM & Vitousek PM. Organic matter and nitrogen accumulation and nitrogen fixation during early ecosystem development in Hawaii. Biogeochemistry, in press.

  • Dart PJ & Pate JS (1959) Nodulation studies in legumes. III. The effects of delaying inoculation on the seedling symbiosis of barrel medic. Aust. J. Biol. Sci. 12: 427–456

    Google Scholar 

  • Downs MR, Nadelhoffer KJ, Melillo JM & Aber JD (1996) Immobilization of a 15N-labelled nitrate addition by decomposing forest litter. Oecologia 105: 141–150

    Google Scholar 

  • DuBois JD & Kapustka LA (1983) Biological nitrogen influx in an Ohio relict prairie. Am. J. Bot. 70: 8–16

    Google Scholar 

  • Eisele KA, Schimel DS, Kapustka LA & Parton WJ (1989) Effects of available P and N:P ratios of non-symbiotic dinitrogen fixation in tallgrass prairie soils. Oecologia 79: 471–474

    Google Scholar 

  • Eldridge DJ & Greene RSB (1994) Microbiotic soil crusts: A review of their roles in soil and ecological processes in the rangelands of Australia. Aust. J. Soil Res. 32: 389–415

    Google Scholar 

  • Eskew D, Eaglesham AR & App AA (1981) Heterotrophic 15N2 fixation and distribution of newly fixed nitrogen in a rice-flooded soil system. Plant Physiol. 68: 48–52

    Google Scholar 

  • Evans RD & Belnap J (1999) Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80: 150–160

    Google Scholar 

  • Evans RD & Johansen JR (1999) Microbiotic crusts and ecosystem processes. Crit. Rev. Plant Sci. 18: 183–225

    Google Scholar 

  • Evans RD & Ehleringer JR (1993) A break in the nitrogen cycle of arid lands: evidence from δ15N of soils. Oecologia 94: 314–317

    Google Scholar 

  • Field CB, Chapin FS III, Matson PA & Mooney HA (1992) Responses of terrestrial ecosystems to the changing atmosphere: a resource-based approach. Annu. Rev. Ecol. Syst. 23: 201–235

    Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT & Falkowski P (1998) Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281: 237–240

    Google Scholar 

  • Fritz-Sheridan RP & Coxson DS (1988) Nitrogen fixation on a tropical volcano, La Soufriere (Guadeloupe). Lichenologist 20: 63–81

    Google Scholar 

  • Galloway, JN, Schlesinger WH, Levy H II, Michaels A & Schnoor JL (1995) Nitrogen fixation: atmospheric enhancement - environmental response. Global Biogeochem. Cycles 9: 235–252

    Google Scholar 

  • Goosem S & Lamb D (1986) Measurements of phyllosphere nitrogen fixation in a tropical and two subtropical rain forests. J. Trop. Ecol. 2: 373–376

    Google Scholar 

  • Graetz RD & Tongway DJ (1986) Influence of grazing management on vegetation, soil structure, nutrient distribution and the infiltration of applied rainfall in a semi-arid chenopod shrubland. Aust. J. Ecol. 11: 347–360

    Google Scholar 

  • Grimm NB & Fisher SG (1989) Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. J. N. Am. Benthol. Soc. 8: 293–307

    Google Scholar 

  • Grimm NB & Petrone KC (1997) Nitrogen fixation in a desert stream ecosystem. Biogeochemistry 37: 33–61

    Google Scholar 

  • Gutschick VP (1981) Evolved strategies in nitrogen acquisition by plants. Am. Nat. 118: 607–637

    Google Scholar 

  • Hall SJ & Matson PA (1999) Nitrogen oxide emissions after nitrogen additions in tropical forests. Nature 401: 152–155

    Google Scholar 

  • Handley LL & Scrimgeour CM (1997) Terrestrial plant ecology and 15N natural abundance: the present limits to interpretation for uncultivated systems with original data from a Scottish old field. Adv. Ecol. Res. 27: 133–212

    Google Scholar 

  • Handley LL, Austin AT, Robinson D, Scrimgeour CM, Raven JA, Heaton THE, Schmidt S & Stewart GR (1999) The 15N natural abundance (δ 15N) of ecosystem samples reflects measures of water availability. Aust. J. Plant Physiol. 26: 185–199

    Google Scholar 

  • Hartwig UA (1998) The regulation of symbiotic N2 fixation: A conceptual model of N feedback from the ecosystem to the gene expression level. Persepct. Plant Ecol. Evol. Syst. 1: 92–120

    Google Scholar 

  • Hedin LO, Armesto JJ & Johnson AH (1995) Patterns of nutrient loss from unpolluted, oldgrowth temperate forests: evaluation of biogeochemical theory. Ecology 76: 493–509

    Google Scholar 

  • Herbert DA, Rastetter EB, Shaver GR & Agren GI (1999) Effects of plant growth characteristics on biogeochemistry and community composition in a changing climate. Ecosystems 2: 367–382

    Google Scholar 

  • Hobbie SE & Vitousek PM. (2000) Nutrient regulation of decomposition in Hawaiian forests: Do the same nutrients limit production and decomposition? Ecology 81: 1867–1877

    Google Scholar 

  • Hoffmann L (1989) Algae of terrestrial habitats. Bot. Rev. 55: 77–105

    Google Scholar 

  • Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol. 137: 179–203

    Google Scholar 

  • Hooper DU & Johnson L (1999) Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation. Biogeochemistry 46: 247–293

    Google Scholar 

  • Horne AJ & Carmiggelt CJW (1975) Algal nitrogen fixation in California streams: seasonal cycles. Freshwater Biol. 5: 461–470

    Google Scholar 

  • Howarth RW & Cole JJ (1985) Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters. Science 229: 653–655

    Google Scholar 

  • Howarth RW, Chan F & Marino R (1999) Do top-down and bottom-up controls interact to exclude nitrogen-fixing cyanobacteria from the plankton of estuaries? An exploration with a simulation model. Biogeochemisty 46: 203–231

    Google Scholar 

  • Howarth RW, Marino R, Land J & Cole JJ (1988a) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnol. Oceanogr. 33: 669–687

    Google Scholar 

  • Howarth RW, Marino R & Cole JJ (1988b) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls. Limnol. Oceanogr. 33: 688–701

    Google Scholar 

  • Hungate BA, Dijkstra P, Johnson DW, Hinkle CR & Drake BG (1999) Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Glob. Change Biol. 5: 797–806

    Google Scholar 

  • James EK (2000) Nitrogen fixation in epiphytic and associative symbiosis. Field Crop Res. 65: 197–209

    Google Scholar 

  • James EK & Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. CRC Cr. Rev. Plant Sci. 17: 77–119

    Google Scholar 

  • Johansen JR & Rushforth SR (1985) Cryptogamic soil crusts; Seasonal variation in algal populations in the Tintic mountains, Juab County, Utah. Great Basin Nat. 45: 14–21

    Google Scholar 

  • Johansen JR, Ashley J & Rayburn WR (1993) Effects of rangefire on soil algal crusts in semiarid shrub-steppe of the lower Columbia Basin and their subsequent recovery. Great Basin Nat. 53: 73–88

    Google Scholar 

  • Jones K (1992) Diurnal nitrogen fixation in tropical marine cyanobacteria: a comparison between adjacent communities of non-heterocystous Lyngbya sp. and heterocystous Calothrix sp. Brit. Phycol. J. 27: 107–118

    Google Scholar 

  • Joye SB & Paerl HW (1993) Contemporaneous nitrogen-fixation and denitrification in intertidal microbial mats - rapid response to runoff events. Mar. Ecol.-Prog. Ser. 94: 267–274

    Google Scholar 

  • Joye SB & Paerl HW (1994) Nitrogen cycling in microbial mats: rates and patterns of denitrification and nitrogen fixation. Mar. Biol. 119: 285–295

    Google Scholar 

  • Kapustka LA & DuBois JD (1987) Dinitrogen fixation by cyanobacteria and associative rhizosphere bacteria in the Arapaho Prairie in the Sand Hills of Nebraska. Am. J. Bot. 74: 107–113

    Google Scholar 

  • Keller M & Reiners WA (1994) Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession from pasture to forest in the Atlantic lowlands of Costa Rica. Global Biogeochem. Cycles 8: 399–409

    Google Scholar 

  • Knapp AK & Seastedt TR (1986) Detritus accumulation limits productivity of tallgrass prairie. Bioscience 36: 662-68

    Google Scholar 

  • Kurina LM & Vitousek PM (1999) Controls over the accumulation and decline of a nitrogen-fixing lichen, Stereocaulon vulcani, on young Hawaiian lava flows. J. Ecol. 87: 784–799

    Google Scholar 

  • Liengen T (1999) Environmental factors influencing the nitrogen fixation activity of freeliving terrestrial cyanobacteria from a high arctic area, Spitsbergen. Can. J. Microbiol. 45: 573–581

    Google Scholar 

  • Liengen T & Olsen RA (1997) Nitrogen fixation by free-living cyanobacteria from different coastal sites in a high arctic tundra, Spitsbergen. Arctic Alpine Res. 29: 470–477

    Google Scholar 

  • Lüscher A, Hendry GR & Nösberger J (1998) Long-term responsiveness to free air CO2 enrichment of functional types, species and genotypes of plants from fertile permanent grassland. Oecologia113: 37–45

    Google Scholar 

  • Marino R, Howarth RW, Shamess J & Prepas E (1990) Molybdenum and sulfate as controls on the abundance of nitrogen-fixing cyanobacteria in saline lakes in Alberta. Limnol. Oceanogr. 35: 245–259

    Google Scholar 

  • Marino R, Chan F, Howarth RW & Pace M (Manuscript in preparation)

  • Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W, Robertson GP, Santos OC & Treseder K (1999) Nitrogen stable isotope composition of leaves and soil: tropical versus temperate forests. Biogeochemistry46: 45–65

    Google Scholar 

  • Matson PA & Vitousek PM (1987) Cross-system comparison of soil nitrogen transformations and nitrous oxide fluxes in tropical forests. Global Biogeochem. Cy. 1: 163–170

    Google Scholar 

  • Matson PA, McDowell WH, Townsend AR & Vitousek PM (1999) The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry 46: 67–83

    Google Scholar 

  • McKane RB, Rastetter EB, Shaver GR, Nadelhoffer KJ, Giblin AE, Laundre JA & Chapin FS III (1997) Reconstruction and analysis of historical changes in carbon storage in arctic Tundra. Ecology 78: 1188–1198

    Google Scholar 

  • McCollum EW, Crowder LB & McCollum SA (1998) Complex interactions of fish, snails, and littoral zone periphyton. Ecology 79: 1980–1994

    Google Scholar 

  • McKey D (1994) Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle. In: Sprent JL & McKey D (Eds) Advances in Legume Systematics: Part 5 - The Nitrogen Factor (pp 211–228). Royal Botanic Gardens, Kew, England

    Google Scholar 

  • Mooney HA & Gulmon SL (1979) Environmental and evolutionary constraints on the photosynthetic characteristics of higher plants. In: Solbrig OT, Jain S, Johnson GB & Raven PH (Eds) Plant Population Biology (pp 316–337). Columbia University Press, New York

    Google Scholar 

  • Moreira FMS, Silva MF & Faria SM (1992) Occurence of nodulation in legume species in the Amazon region of Brazil. New Phytol. 121: 563–570

    Google Scholar 

  • Nutman PS (1948) Physiological studies on nodule formation. I. The relation between nodulation and lateral root formation in red clover. Ann. Bot. N.S. 12: 81–96

    Google Scholar 

  • Paerl HW (1985) Microzone formation: its role in the enhancement of aquatic N2 fixation. Limnol. Oceanogr. 30: 1246–1252

    Google Scholar 

  • Parrotta JA, Baker DD & Fried M (1996) Changes in dinitrogen fixation in maturing stands of Casuarina equisetifolia and Leucaena leucocephala. Can. J. Forest Res. 26: 1684–1691

    Google Scholar 

  • Pastor J & Binkley D (1998) Nitrogen fixation and the mass balances of carbon and nitrogen in ecosystems. Biogeochemistry43: 63–78

    Google Scholar 

  • Paul EA & Clark FE (1989) Soil Microbiology and Biochemistry. Academic Press, London

    Google Scholar 

  • Peterjohn WT & Schlesinger WH (1990) Nitrogen loss from deserts in the southwestern United States. Biogeochemistry 10: 67–79

    Google Scholar 

  • Peterjohn WT & Schlesinger WH (1991) Factors controlling denitrification in a Chihuahuan desert ecosystem. Soil Sci. Soc. Am. J. 55: 1694–1701

    Google Scholar 

  • Prance GT, Rodrigues WA & Silva MF (1976) Inventário florestal de um hectare de mata de terra-firme km 30 da estrada Manaus-Itacoatiara. Acta Amazon. 6: 9–35

    Google Scholar 

  • Prescott CE (1995) Does nitrogen availability control rates of litter decomposition in forests? Plant Soil143: 1–10

    Google Scholar 

  • Rastetter EB & Shaver GR (1992) A model of multiple-element limitation for acclimating vegatation. Ecology 73: 1157–1174

    Google Scholar 

  • Rastetter EB, Ågren GI & Shaver GR (1997) Responses of N-limited ecosystems to increased CO2: A balanced-nutrition, coupled-element-cycles model. Ecol. App. 7: 444–460

    Google Scholar 

  • Ribet J & Drevon J-J (1996) The phosphorus requirement of N2-fixing and urea-fed Acacia Mangium. New Phytol. 132: 383–390

    Google Scholar 

  • Rychert RD & Skujins J (1974) Nitrogen fixation by blue-green algae-lichen crusts in the Great Basin Desert. Soil Sci. Soc. Amer. Proc. 38: 768–771

    Google Scholar 

  • Ritchie ME & Tilman D (1995) Responses of legumes to herbivores and nutrients during succession on a nitrogen-poor soil. Ecology 76: 2648–2655

    Google Scholar 

  • RitchieME, Tilman D & Knops JMH (1998) Herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology 79: 165–177

    Google Scholar 

  • Robson AD (1983) Mineral nutrition. In: Broughton WJ (Ed) Nitrogen Fixation Vol 3 Legumes (pp 36–55). Clarendon Press, Oxford

    Google Scholar 

  • Sanginga N, Danso SKA, Zapata F & Bowen GD (1995) Phosphorus requirements and nitrogen accumulation by N2-fixing and non-N2-fixing leguminous trees growing in low P soils. Biol. Fert. Soils 20: 205–211

    Google Scholar 

  • Schaffner WR, Hairston NG & Howarth RW (1994) Feeding rates and filament clipping by crustacean zooplankton consuming cyanobacteria. Verh. Internat. Verein. Limnol. 25: 2375–2381

    Google Scholar 

  • Schimel DS, Brassell BH & Parton WJ (1997) Equilibration of the terrestrial water, nitrogen, and carbon cycles. PNAS94: 8280–8283

    Google Scholar 

  • Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195: 260–267

    Google Scholar 

  • Schultze LS, Ferris FG, Sherwood-Lollar B & Gerits JP (1996) Ultrastructure and seasonal growth patterns of microbial mats in a temperate climate saline alkaline lake: Goodenough Lake, British Columbia, Canada. Canadian Journal of Microbiology 42: 147–161

    Google Scholar 

  • Sellers PJ, Dickenson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz GJ, Denning AS, Mooney HA, Nobre CA, Sato N, Field CB & Henderson-Sellers A (1997) Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275: 502–509

    Google Scholar 

  • Shields LM & Durrell LW (1964) Algae in relation to soil fertility. Bot. Rev. 30: 92–128

    Google Scholar 

  • Skujins J (1981) Nitrogen cycling in arid ecosystems. In: Clark FE & Rosswall T (Eds) Terrestrial Nitrogen Cycles: Processes, Ecosystem Strategies and Management Impacts (pp 477–491). Ecological Bulletins (Stockholm) 33, Swedish Natural Science Research Council, Stockholm, Sweden

    Google Scholar 

  • Smith VH (1992) Effects of nitrogen:phosphorus supply ratios on nitrogen fixation in agricultural and pastoral systems. Biogeochemistry 18: 19–35

    Google Scholar 

  • Smith VH & Bennett SJ (1999) Nitrogen:Phosphorus supply ratios and phytoplankton community structure in lakes. Arch. Hydrobiol. 146: 37–53

    Google Scholar 

  • Soltis DE, Soltis PS, Morgan DR, Swenson SM, Mullin BC, Dowd JM & Martin PG (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. PNAS 92: 2647–2651

    Google Scholar 

  • Sprent JI (1999) Nitrogen fixation and growth of non-crop legume species in diverse environments. Perspect. Plant Ecol. Evol. Syst. 2: 149–162

    Google Scholar 

  • Sprent JI & Raven JA (1985) Evolution of nitrogen fixing symbioses. Proceedings of the Royal Society of Edinburgh B85: 215–237

    Google Scholar 

  • Sprent JI & Sprent P (1990) Nitrogen Fixing Organisms. Chapman and Hall, London

    Google Scholar 

  • Sprent JI, Geoghegan IE, Whitty PW & James EK (1996) Natural abundance of 15N and 13C in nodulated legumes and other plants in the Cerrado and neighboring regions of Brazil. Oecologia 105: 440–446

    Google Scholar 

  • Stal LJ (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol. 131: 1–32

    Google Scholar 

  • Stewart WDP (1974) Blue-green algae. In: Quispel A (Ed) North Holland Research Monographs. Front. Biol. 33: 202–237

  • Sylvester-Bradley R, Oliveira LA, Podestá Filho JA & St. John TV (1980) Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen-fixing Azospirillum spp. in representative soils of Central Amazonia. Agro-Ecoystems 6: 249–266

    Google Scholar 

  • Thompson MV & Vitousek PM (1997) Asymbiotic nitrogen fixation and decomposition during long-term soil development in Hawaiian montane rain forest. Biotropica 29: 134–144

    Google Scholar 

  • Tuchman NC & Stevenson RJ (1991) Effects of selective grazing by snails on benthic algal succession. J. N. Am. Benthol. Soc. 10: 430–443

    Google Scholar 

  • Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400: 525–531

    Google Scholar 

  • Villbrandt M, Krumbein WE & Stal LJ (1991) Diurnal and seasonal variations of nitrogen fixation and photosynthesis in cyanobacterial mats. Plant Soil 137: 13–16

    Google Scholar 

  • Vitousek PM & Field CB (1999) Ecosystem constraints to symbiotic nitrogen fixers: a simple model and its implications. Biogeochemistry 46: 179–202

    Google Scholar 

  • Vitousek PM & Farrington H (1997) Nutrient limitation and soil development: experimental test of a biogeochemical theory.Biogeochemistry 37: 63–75

    Google Scholar 

  • Vitousek PM & Hobbie SE. The control of heterotrophic nitrogen fixation in decomposing litter. Ecology 81: 2366-2376

  • Vitousek PM & Howarth RW (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13: 87–115

    Google Scholar 

  • Vitousek PM & Sanford RL Jr. (1986) Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17: 137–167

    Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH & Tilman D (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Applic. 7: 737–750

    Google Scholar 

  • Vitousek PM, Hedin LO, Matson PA, Fownes JH & Neff J (1998) Within-system element cycles, input-output budgets, and nutrient limitation. In: Pace M & Groffman P (Eds) Successes, Limitations, and Frontiers in Ecosystem Science (pp 432–452). Springer-Verlag, Berlin

    Google Scholar 

  • Walker TW & Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15: 1–19

    Google Scholar 

  • Warren SD (1995) Ecological role of microphytic soil crusts in arid ecosystems. In: Allsopp D, Colwell RR & Harksworth DL (Eds) Microbial Diversity and Ecosystem Function (pp 199–209). CAB International

  • West NE (1990) Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions. Adv. Ecol. Res. 20: 179–223

    Google Scholar 

  • Wiebe WJ, Johannes RE & Webb KL (1975) Nitrogen fixation in a coral reef community. Science 188: 257–259

    Google Scholar 

  • Williams SL & Carpenter RC (1997) Grazing effects on nitrogen fixation in coral reef algal turfs. Mar. Biol. 130: 223–231

    Google Scholar 

  • Williams SL & Carpenter RC (1998) Effects of unidirectional and oscillatory water flow on nitrogen fixation (acetylene reduction) in coral reef algal turfs, Keneohe Bay, Hawaii. J Exp. Mar. Ecol. Biol. 226

  • Wilson JT & Alexander M(1979) Effect of soil nutrient status and pH on nitrogen-fixing algae in flooded soils. Soil Sci. Soc. Am. J. 43: 936–939

    Google Scholar 

  • Yoneyama T, Moraoka T, Murakami T & Boonkerd N (1993) Natural abundance of 15N in tropical plants with emphasis on tree legumes. Plant Soil 153: 295–304

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitousek, P.M., Cassman, K., Cleveland, C. et al. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57, 1–45 (2002). https://doi.org/10.1023/A:1015798428743

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015798428743

Navigation