Skip to main content
Log in

Synthesis and Properties of Perfluoroalkyl Groups Containing Double Four-Ring Spherosilicate (Siloxysilsesquioxane) Precursors

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Organically modified cage-like double four-ring spherosilicates have received considerable interest in the construction of nanosized hybrid materials, as well as building units for structural well-defined polymers. This group is extended by perfluoroalkyl ligands containing spherosilicates, synthesized by addition reaction of the octahydridodimethylsiloxyoctasilsesquioxane [H(CH3)2Si]8Si8O20 and heptadecafluorodecyl methacrylate. The resultant liquid spherosilicate substituted with eight terminal perfluoroalkyl groups was characterized by 29Si and 13C NMR spectroscopies and MALDI Time-of-Flight mass spectrometry. Partial substitution of perfluoroalkyl ligands by trimethoxysilyl containing groups provides condensable precursors for the synthesis of hydrophobic and oleophobic materials via the sol-gel process. This new spherosilicate, carrying on average four perfluoroalkyl groups and four trimethoxysilyl groups shows better hydrophobic and oleophobic properties compared with commonly used perfluoroalkyltrialkoxysilanes under identical concentration of perfluoroalkyl chains. In addition a comprehensive literature survey is given on structural well characterized, organically modified cage-like double four-ring spherosilicates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hoebbel and W. Wieker, Z. Anorg. Allg. Chem. 384, 43 (1971).

    Google Scholar 

  2. G. Calzaferri, in Tailor-Made Silicon-Oxygen Compounds. From Molecules to Materials, edited by R. Corriu and P. Jutzi (Vieweg, 1996), p. 149.

  3. P.G. Harrison, J. Organomet. Chem. 542, 141 (1997).

    Google Scholar 

  4. D. Hoebbel, I. Pitsch, W. Hiller, S. Dathe, E. Popowski, G. Sonnek,T. Reiher,H. Jancke, and U. Scheim, European Patent 0348 705, 1989.

  5. R. Weidner, N. Zeller, B. Deubzer, and V. Frey, U.S. Patent 5,047,492, 1991.

  6. P. Spes, M. Heβling, F.H. Kreuzer, and C. Freyer, DE Patent 40 08 076, 1991.

  7. Y.I. Smolin, F. Shepelev, and R. Pomes, in Khim. Silik. Oksidov (Nauka, Leningrad, 1982) p. 68.

    Google Scholar 

  8. P.A. Agaskar, Inorg. Chem. 29, 1603 (1990).

    Google Scholar 

  9. C. Bonhomme, F. Babonneau, J. Maquet, C. Zhang, R. Baranwal, and R.M. Laine, Mat. Res. Soc. Symp. Proc. 435, 437 (1996).

    Google Scholar 

  10. N. Auner, B. Ziemer, B. Herrschaft, W. Ziche, P. John, and J. Weis, Eur. J. Inorg. Chem. 1087 (1999).

  11. I. Pitsch, D. Hoebbel, H. Jancke, and W. Hiller, Z. Anorg. Allg. Chem. 596, 63 (1991).

    Google Scholar 

  12. I. Hasegawa, Synth. React. Inorg. Met.-Org. Chem. 24, 1099 (1994).

    Google Scholar 

  13. C. Zhang and R.M. Laine, Polymer Preprints 38, 120 (1997).

    Google Scholar 

  14. D. Hoebbel, I. Pitsch, D. Heidemann, H. Jancke, and W. Hiller, Z. Anorg. Allg. Chem. 583, 133 (1990).

    Google Scholar 

  15. D. Hoebbel, I. Pitsch, A.-R. Grimmer, H. Jancke, W. Hiller, and R.K. Harris, Z. Chem. 29, 260 (1989).

    Google Scholar 

  16. P.G. Harrison and C. Hall, Main Group Metal Chemistry 20, 515 (1997).

    Google Scholar 

  17. P.A. Agaskar, Synth. React. Inorg. Met.-Org. Chem. 20, 483 (1990).

    Google Scholar 

  18. P. Jutzi, C. Batz, and A. Mutluay, Z. Naturforsch. 49b, 1689 (1994).

    Google Scholar 

  19. S.E. Yuchs and K.A. Carrado, Inorg. Chem. 35, 261 (1996).

    Google Scholar 

  20. D. Hoebbel, I. Pitsch, T. Reiher, W. Hiller, H. Jancke, and D. Müller, Z. Anorg. Allg. Chem. 576, 160 (1989).

    Google Scholar 

  21. A. Sellinger and R.M. Laine, Macromolecules 29, 2327 (1996).

    Google Scholar 

  22. F.J. Feher, D. Soulivong, A.G. Eklund, and K.D. Wyndham, J. Chem. Soc., Chem. Commun. 1185 (1997).

  23. A. Sellinger and R.M. Laine, Chem. Mater. 8, 1592 (1996).

    Google Scholar 

  24. C. Zhang and R.M. Laine, J. Organomet. Chem. 521, 199 (1996).

    Google Scholar 

  25. D. Hoebbel, K. Endres, T. Reinert, and H. Schmidt, Mat. Res. Soc. Symp. Proc. 346, 863 (1994).

    Google Scholar 

  26. D. Hoebbel, T. Reinert, K. Endres, and H. Schmidt, in Proc. First European Workshop on Hybrid Organic-Inorganic Materials, Bierville, France, 1993, p. 319.

    Google Scholar 

  27. M. Moran, C.M. Casado, and I. Cuadrado, Organometallics 12, 4327 (1993).

    Google Scholar 

  28. C.S. Brevett, P.C. Cagle, W.G. Klemperer, D.M. Millar, and G.C. Ruben, J. Inorg. Organomet. Polymers 1, 335 (1991).

    Google Scholar 

  29. V.W. Day, W.G. Klemperer, V.V. Mainz, and D.M. Millar, J. Am. Chem. Soc. 107, 8262 (1985).

    Google Scholar 

  30. M.A. Said, H.W. Roesky, C. Rennekamp, M. Andruh, H.G. Schmidt, and M. Noltemeyer, Angew. Chem. 111, 702 (1999).

    Google Scholar 

  31. F.J. Feher and K.J. Weller, Inorg. Chem. 30, 880 (1991).

    Google Scholar 

  32. P.G. Harrison and R. Kannengiesser, J. Chem. Soc., Chem. Commun. 415 (1996).

  33. R.M. Laine, M. Asuncion, S. Baliat, N.L. Dias Filho, J. Harcup, A.C. Sutorik, L. Viculis, A.F. Yee, C. Zhang, and Q. Zhu, Mat. Res. Soc. Symp. Proc. 576, 3 (1999).

    Google Scholar 

  34. C. Zhang, F. Babonneau, C. Bonhomme, R.M. Laine, C.L. Soles, H.A. Hristov, and A.F. Yee, J. Am. Chem. Soc. 120, 8380 (1998).

    Google Scholar 

  35. P.A. Agaskar, J. Chem. Soc., Chem. Commun. 1024 (1992).

  36. D. Hoebbel, K. Endres, T. Reinert, and I. Pitsch, J. Non-Cryst. Solids 176, 179 (1994).

    Google Scholar 

  37. I. Hasegawa, J. Sol-Gel Sci. Technol. 5, 93 (1995).

    Google Scholar 

  38. J.J. Schwab, J.D. Lichtenhan, K.P. Chaffee, P.T. Mather, and A. Romo-Uribe, Mat. Res. Soc. Symp. Proc. 519, 21 (1998).

    Google Scholar 

  39. F.J. Feher, R. Terroba, R.Z. Jin, K.D. Wyndham, S. Lücke, R. Brutchey, and F. Nguyen, Polym. Mater. Sci. Eng. 82, 301 (2000).

    Google Scholar 

  40. F.J. Feher, D.A. Newman, and J.F. Walzer, J. Am. Chem. Soc. 111, 1741 (1989).

    Google Scholar 

  41. P.C. Cagle, W.G. Klemperer, and A. Simmons, Mat. Res. Soc. Symp. Proc. 180, 29 (1990).

    Google Scholar 

  42. P.A. Agaskar, J. Am. Chem. Soc. 111, 6858 (1989).

    Google Scholar 

  43. W.G. Klemperer, V.V. Mainz, and D.M. Millar, Mat. Res. Soc. Symp. Proc. 73, 3 (1986).

    Google Scholar 

  44. R.M. Laine, C. Zang, A. Sellinger, and L. Viculis, Applied Organometallic Chemistry 12, 715 (1998).

    Google Scholar 

  45. E.T. Lippmaa, M.A. Alla, T.J. Pehk, and G. Engelhardt, J. Am. Chem. Soc. 100, 1929 (1978).

    Google Scholar 

  46. A.G. Pittman, in Surface Properties of Fluorocarbon Polymers, edited by L.A. Wall (J. Wiley, New York, 1972).

    Google Scholar 

  47. M.M. Doeff and E. Lindner, Macromolecules 22, 2951 (1989).

    Google Scholar 

  48. I.J. Park, S.B. Lee, C.K. Choi, and K.J. Kim, J. Colloid Interface Sci. 181, 284 (1996).

    Google Scholar 

  49. R. Kasemann, S. Brück, and H. Schmidt, in Eurogel'91, edited by S. Vilminot, R. Nass, and H. Schmidt (Elsevier Science, Amsterdam, 1992) p. 353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoebbel, D., Weber, C., Schmidt, H. et al. Synthesis and Properties of Perfluoroalkyl Groups Containing Double Four-Ring Spherosilicate (Siloxysilsesquioxane) Precursors. Journal of Sol-Gel Science and Technology 24, 121–129 (2002). https://doi.org/10.1023/A:1015239707783

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015239707783

Navigation