Skip to main content
Log in

Solvent and Temperature Effects on Polymer-Coated Glass Fibers. Fluorescence of the Dansyl Moiety

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

E-type glass fibers were coated with poly(γ-aminopropyltriethoxysilane), treating them with a 1% (v/v) monomer aqueous solution. The fibers were labeled with a dansyl-sulfonamide conjugate by reaction of acetonitrile solutions of dansyl chloride with the amine groups immobilized on the glass fiber surface. Interactions of the labeled coating polymer with solvents of different polarities were estimated by measurements of the fluorescence band shifts of the label. It was found that for aprotic solvents, the solvent dipolar coupling relaxation mechanism is dominated by thermodynamic interactions of the solvent with the polymer matrix, while for protic solvents this mechanism is dominated by specific interactions between solvent molecules and the excited state of the chromophore. Different experimental excited-state dipole moments were obtained for nonpolar and polar solvents (μ* NP = 7.2 ± 1.6 D, μ* P = 11.9 ± 1.5 D). Using the AM1 method, excited-state dipole moments for the first and second singlets were calculated and it was concluded that μ* NP ≃ 〈μ*2 11/2 and μ* P ≃ 〈μ*2 21/2. Accordingly, neither the glass support nor the coating polar influence the excited-state properties of dansyl. The temperature dependence of dansyl emission allows the determination of the relaxation temperature of the coating polymer, which was estimated as 175 K for the coating used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Ishida (1984) Polym. Composites 5, 101.

    Google Scholar 

  2. H. Okabayashi, I. Shimizu, E. Nishio, and C. J. O'Connor (1997) Colloid Polym. Sci. 275, 744.

    Google Scholar 

  3. J. González-Benito, J. Baselga, and A. J. Azna (1999) J. Mater. Process. Technol. 92–93, 129.

    Google Scholar 

  4. D. Wang and F. R. Jones (1993) J. Mater. Sci. 28, 2481.

    Google Scholar 

  5. P. Walker (1991) J. Adhes. Sci. Technol. 4, 279.

    Google Scholar 

  6. H. Hamada, N. Ikuta, N. Nishida, and Z. Maekawa (1994) Composites 25, 512.

    Google Scholar 

  7. E. P. Plueddemann (1982) Silane Coupling Agents, Plenum Press, New York.

    Google Scholar 

  8. J. R. Lakowicz (1999) Principles of Fluorescence Spectroscopy, 2nd ed., Plenum Press; New York, Chap. 7.

    Google Scholar 

  9. K. Kalyanasundaram (1991) in V. Ramamurthy (Ed.), Photochemistry in Organized & Constrained Media, VCH, New York, Chap. 2.

    Google Scholar 

  10. S. W. Beavan, J. S. Hargreaves, and D. Phillips (1979) Adv. Photochem. 11, 207.

    Google Scholar 

  11. K. J. Shea, D. Y. Sasaki, and G. J. Stoddard (1989) Macromolecules 22, 1722.

    Google Scholar 

  12. D. A. Hoffmann, J. E. Anderson, and C. W. Frank (1995) J. Mater. Chem. 5, 13.

    Google Scholar 

  13. J. González-Benito, J. C. Cabanelas, A. J. Aznar, M. R. Vigil, J. Bravo, and J. Baselga (1996) J. Appl. Polym. Sci. 62, 375.

    Google Scholar 

  14. E. Carlier, A. Revillon, A. Guyot, and J. Chauvet (1993) Eur. Polym. J. 29(6), 819.

    Google Scholar 

  15. C. H. Lochmüller, D. B. Marshall, and D. R. Wilder (1981) Anal. Chim. Acta 130, 31.

    Google Scholar 

  16. B. Serrano, B. Levenfeld, J. Bravo, and J. Baselga (1996) J. Polym. Eng. Sci. 36, 175.

    Google Scholar 

  17. P. Suppan (1990) J. Photochem. Photobiol. A Chem. 50, 293.

    Google Scholar 

  18. Y. Li, L. Chan, L. Tyer, R. T. Moody, Ch. M. Himel, and D. M. Hercules (1975) J. Am. Chem. Soc. 97, 3118.

    Google Scholar 

  19. T. R. Griffiths and D. C. Pugh (1979) Coord. Chem. Rev. 29, 129.

    Google Scholar 

  20. J. Brandrup and E. H. Immergut (Eds.) (1989) Polymer Handbook, John Wiley & Sons, New York.

    Google Scholar 

  21. C. M. Hansen and K. Skaarup (1967) J. Paint Technol. 39, 511.

    Google Scholar 

  22. Y. Du, Y. Xue, and H. L. Frisch (1996) Physical Properties of Polymers Handbook, AIP Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Baselga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Benito, J., Aznar, A. & Baselga, J. Solvent and Temperature Effects on Polymer-Coated Glass Fibers. Fluorescence of the Dansyl Moiety. Journal of Fluorescence 11, 307–314 (2001). https://doi.org/10.1023/A:1013974907580

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013974907580

Navigation