Skip to main content
Log in

Biophysics and Physiology of Temperature Regulation in Thermogenic Flowers

  • Published:
Bioscience Reports

Abstract

The flowers or inflorescences of certain primitive seed plants are able to regulate their temperature during blooming by modulating the rate of heat production to remain much warmer than the surroundings. A large drop in ambient temperature causes a smaller drop in flower temperature which causes an increase in the rate of heat production by futile involvement of the cytochrome and alternative oxidase respiratory pathways. The result is that the rate of heat production is inversely related to ambient temperature and flower temperature remains high and relatively independent of ambient temperature. While the biophysics of thermal balance in the whole flowers is better understood, the regulation of the biochemical heat-generating pathways is not known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Chauveau, M., Dizengremel, P., and Lance, C. (1978) Thermolability of the alternative electron transport pathway in higher plant mitochondria. Physiol. Plant. 42:214-220.

    Google Scholar 

  • Day, D. A., Whelan, J., Millar, A. H., Siedow, J. N., and Wiskich, J. T. (1995) Regulation of the alternative oxidase in plants and fungi. Aust. J. Plant Physiol. 22:497-509.

    Google Scholar 

  • Elthon, T. E. and McIntosh, L. (1986) Characterization and solubilization of the alternative oxidase of Sauromatum guttatum mitochondria. Plant Physiol. 82:1-6.

    Google Scholar 

  • Elthon, T. E. and McIntosh, L. (1987) Identification of the alternative terminal oxidase of higher plant mitochondria. Proc. Natl. Acad. Sci. USA 84:8399-8403.

    Google Scholar 

  • Elthon, T. E., Nickels, R. L., and McIntosh, L. (1989) Mitochondrial events during the development of thermogenesis in Sauromatum guttatum (Schott). Planta 180:82-89.

    Google Scholar 

  • Gottsberger, G. (1990) Flowers and beetles in the South American Tropics. Bot. Acta 103:360-365.

    Google Scholar 

  • Knutson, R. M. (1974) Heat production and temperature regulation in eastern skunk cabbage. Science 186:746-747.

    Google Scholar 

  • Knutson, R. M. (1979) Plants in heat. Natural History 88:42-47.

    Google Scholar 

  • Listabarth, C. (1996) Pollination of Bactris by Phyllotrox and Epurea. Implications of the palm breeding beetles on pollination at the community level. Biotropica 28:69-81.

    Google Scholar 

  • Meeuse, B. J. D. and Raskin, I. (1988) Sexual reproduction in the arum lily family, with emphasis on thermogenicity. Sex Plant Reprod. 1:3-15.

    Google Scholar 

  • Miyake, K. (1898) Some physiological observations on Nelumbo nucifera, Gærtn. Gærtn. Bot. Mag. Tokyo 12:112-117.

    Google Scholar 

  • Moore, A. L. and Siedow, J. N. (1991) The regulation and nature of the cyanide resistant alternative oxidase of plant mitochondria. Biochem. Biophys. Acta 1059:121-140.

    Google Scholar 

  • Moynihan, M. R., Ordentlich, A., and Raskin, I. (1995) Chilling-induced heat evolution in plants. Plant Physiol. 108:995-999.

    Google Scholar 

  • Nagy, K. A., Odell, D. K., and Seymour, R. S. (1972) Temperature regulation by the inflorescence of Philodendron. Science 178:1195-1197.

    Google Scholar 

  • Nobel, P. S. (1999) Physicochemical and Environmental Plant Physiology. New York: Academic Press.

    Google Scholar 

  • Prance, G. T. and Arias, J. R. (1975) A study of the floral biology of Victoria amazonica (Poepp.) Sowerby (Nymphaeaceae). Acta Amazonica 5:109-139.

    Google Scholar 

  • Raskin, I., Ehmann, A., Melander, W. R., and Meeuse, B. J. D. (1987) Salicylic acid: a natural inducer of heat production in Arum lilies. Science 237:1601-1602.

    Google Scholar 

  • Schneider, E. L. and Buchanan, J. D. (1980) Morphological studies of the Nymphaeaceae. XI. The floral biology of Nelumbo pentapetala. Am. J. Bot. 67:182-193.

    Google Scholar 

  • Schroeder, C. A. (1978) Temperature elevation in palm inflorescences. Principes 22:26-29.

    Google Scholar 

  • Seymour, R. S. (1999) Pattern of respiration by intact inflorescences of the thermogenic arum lily Philodendron selloum. J. Exp. Bot. 50:845-852.

    Google Scholar 

  • Seymour, R. S., Bartholomew, G. A., and Barnhart, M. C. (1983) Respiration and heat production by the inflorescence of Philodendron selloum Koch. Planta 157:336-343.

    Google Scholar 

  • Seymour, R. S. and Blaylock, A. J. (1999) Switching off the heater: influence of ambient temperature on thermoregulation by eastern skunk cabbage Symplocarpus foetidus. J. Exp. Bot. 50:1525-1532.

    Google Scholar 

  • Seymour, R. S. and Schultze-Motel, P. (1996) Thermoregulating lotus flowers. Nature 383:305.

    Google Scholar 

  • Seymour, R. S. and Schultze-Motel, P. (1997) Heat-producing flowers. Endeavour 21:125-129.

    Google Scholar 

  • Seymour, R. S. and Schultze-Motel, P. (1998) Physiological temperature regulation by flowers of the sacred lotus. Phil. Trans. Roy. Soc. Lond. B 353:935-943.

    Google Scholar 

  • Seymour, R. A. and Schultze-Motel, P. (1999) Respiration, temperature regulation and energetics of thermogenic inflorescences of the dragon lily Dracunculus vulgaris (Araceae). Proc. Roy. Soc. Lond. Ser. B. Biol. Sci. 266:1975-1983.

    Google Scholar 

  • Seymour, R. S., Schultze-Motel, P., and Lamprecht, I. (1998) Heat production by sacred lotus flowers depends on ambient temperature, not light cycle. J. Exp. Bot. 49:1213-1217.

    Google Scholar 

  • Siedow, J. N. and Berthold, D. A. (1986) The alternative oxidase: a cyanide-resistant respiratory pathway in higher plants. Physiol. Plant. 66: 569-573.

    Google Scholar 

  • Skubatz, H., Tang, W., and Meeuse, B. J. D. (1993) Oscillatory heat-production in the male cones of cycads. J. Exp. Bot. 44:489-492.

    Google Scholar 

  • Skubatz, H., Williamson, P. S., Schneider, E. L., and Meeuse, B. J. D. (1990) Cyanide-insensitive respiration in thermogenic flowers of Victoria and Nelumbo. J. Exp. Bot. 41:1335-1339.

    Google Scholar 

  • Steponkus, P. L. (1981) Responses to extreme temperatures. Cellular and sub-cellular bases. In: Physiological Plant Ecology I (O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler, eds.), Springer-Verlag, Berlin, pp. 371-402.

    Google Scholar 

  • Thien, L. B., Azuma, H., and Kawano, S. (1999) New perspectives in the pollination biology of basal angiosperms. In: XVI International Botanical Congress. St. Louis.

  • Vanlerberghe, G. C. and McIntosh, L. (1992) Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco. Plant Physiol. 100:115-119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seymour, R.S. Biophysics and Physiology of Temperature Regulation in Thermogenic Flowers. Biosci Rep 21, 223–236 (2001). https://doi.org/10.1023/A:1013608627084

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013608627084

Navigation