Skip to main content
Log in

Hydroquinone: A General Phagostimulating Pheromone in Termites

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The organization of termite societies depends predominantly on intraspecific chemical signals (pheromones) produced by exocrine glands, which induce and modulate individual behavioral responses. Here, the saliva-producing labial glands of termites were investigated with respect to their pheromonal role in communal food exploitation of termite colonies. From these glands, we identified for the first time hydroquinone (1,4-dihydroxybenzene) as a phagostimulating pheromone in the Australian termite species Mastotermes darwiniensis. Hydroquinone is released from the labial glands of termite workers and applied onto the food. It stimulates nestmates to feed at the spot of application and is, thus, employed to mark feeding sites. No synergistic effect with other identified labial gland compounds, such as glucose, inositol, and arbutin, was evident. Significantly, we show that termite species from all over the world, irrespective of taxonomic position and biological traits, produce and employ hydroquinone as phagostimulating signal. The use of the same chemical signal throughout an order is a unique phenomenon, not reported before in animals. Its possible biosynthetic pathway, ecological significance, and evolution are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abe, T. 1987. Evolution of life types in termites, pp. 128–148, in S. Kawano, J. H. Connell, and T. Hidaka (eds.). Evolution, Coadaptation and Biotic Communities. University of Tokyo Press, Tokyo, Japan.

    Google Scholar 

  • Ahmad, S. A. and Hokins, T. L. 1993. β-Glucosylation of plant phenolics by phenol-βglucosyltransferase in larval tissues of the tobacco hornworm Manduca sexta (L.). Insect Biochem. Mol. Biol. 23:581–589.

    Google Scholar 

  • Ambudkar, I. S. 2000. Regulation of calcium in salivary gland secretion. Crit. Rev. Oral Biol. Med. 11:4–25.

    Google Scholar 

  • Becker, G. 1970. Reticulitermes (Ins., Isopt.) in Mittel-andWesteuropa. Z. Angew. Entomol. 65:268–278.

    Google Scholar 

  • Berridge, M. J. 1997. The 1996 Massry Prize. Inositol triphosphate and calcium: two interacting second messengers. Am. J. Nephrol. 17:1–11.

    Google Scholar 

  • Borges, M., Zarbin, P. H. G., Ferreira, J. T. B., and Da Costa, M. L.M. 1999. Pheromone sharing: Blends based on the same compounds for Euschistus heros and Piezodorus guildinii. J. Chem. Ecol. 25:629–634.

    Google Scholar 

  • Brandl, R., Bagine, R. N. K., and Kaib, M. 1996. The distribution of Schedorhinotermes lamanianus (Isoptera: Rhinotermitidae) and its termitophile Paraclystis (Lepidoptera: Tineidae) in Kenya: Its importance for understanding east African biogeography. 1Glob. Ecol. Biogeogr. Lett. 5:143–148.

    Google Scholar 

  • Brian, M. V. 1983. Social Insects: Ecology and Behavioral Biology. Chapman and Hall, London, England.

    Google Scholar 

  • Brunmark, A. and Cadenas, E. 1989. Redox and addition chemistry of quinoid compounds and its biological implications. Free Radic. Biol. Med. 7:435–477.

    Google Scholar 

  • Costa-Leonardo, A. M. and Cruz-Landim, C. 1991. Morphology of the salivary gland acini in Grigiotermes bequaerti (Isoptera: Termitidae: Apicotermitinae). Entomol. Gen. 16:13–21.

    Google Scholar 

  • Grass´e, P.-P. 1982. Termitologia, Vol. 1. Masson, Paris, France.

    Google Scholar 

  • Grass´e, P.-P. 1986. Termitologia, Vol. 3. Masson, Paris, France.

    Google Scholar 

  • Harris, W. V. 1968. African termites of the genus Schedorhinotermes (Isoptera: Rhinotermitidae) and associated termitophiles (Lepidoptera: Tineidae). Proc. R. Entomol Soc. London 37:103–113.

    Google Scholar 

  • Hewitt, P. H., Nel, J. J. C., and Schoeman, I. 1971. Influence of group size on water imbibition by Hodotermes mossambicus alate termites. J. Insect Physiol. 17:587–600.

    Google Scholar 

  • Hogan, M., Veivers, P. C., Slaytor, M., and Czolij, R. T. 1988. The site of cellulose breakdown in higher termites (Nasutitermes walkeri and Nasutitermes exitiosus). J. Insect Physiol. 34: 891–899.

    Google Scholar 

  • Howard, R., Matsumura, F., and Coppel, H. C. 1976. Trail-following pheromones of the Rhinotermitidae: Approaches to their authentication and specificity. J. Chem. Ecol. 2:147–166.

    Google Scholar 

  • Inoue, T., Murashima, K., Azuma, J. I., Sugimoto, A., and Slaytor, M. 1997. Cellulose and xylan utilisation in the lower termite Reticulitermes speratus. J. Insect Physiol. 43:235–242.

    Google Scholar 

  • Itakura, S., Tanaka, H., and Enoki, A. 1997. Distribution of cellulases, glucose and related substances in the body of Coptotermes formosanus. Mater. Org. 31:17–29.

    Google Scholar 

  • Kaib, M. 1999. Termites, pp. 329–353, in J. Hardie and A. K. Minks (eds.). Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants. CABI Publishing, Wallingford.

    Google Scholar 

  • Kaib, M. and Brandl, R. 1992. Distribution, geographic variation and between-colony compatibility of Schedorhinotermes lamanianus inKenya (Isoptera: Rhinotermitidae), pp. 121–131, inJ. BILLEN (ed.). Biology and Evolution of Social Insects. Leuven University Press, Leuven.

    Google Scholar 

  • Kaib, M. and Ziesmann, J. 1992. The labial gland in the termite Schedorhinotermes lamanianus (Isoptera: Rhinotermitidae): Morphology and function during communal food exploitation. Insectes Soc. 39:373–384.

    Google Scholar 

  • Kaib, M., Bruinsma, O., and Leuthold, R. H. 1982. Trail-following in termites: Evidence for a multicomponent system. J. Chem. Ecol. 8:1193–1205.

    Google Scholar 

  • Kambhampati, S. 1995. A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes. Proc. Natl. Acad. Sci. USA 92:2017–2020.

    Google Scholar 

  • Kreitsberg, Z. N. and Ekabsone, M. Y. 1973. Investigation of wood destroyed by enzymes. X. Change in the concentration of paramagnetic centres in biolignins of spruce and birch after the treatment with alkali. Khim. Drev. 14:119–122.

    Google Scholar 

  • Martin, M. M. and Martin, J. S. 1978. Cellulose digestion in the midgut of the fungusgrowing termite Macrotermes natalensis: The role of acquired digestive enzymes. Science 119: 1453–1455.

    Google Scholar 

  • Maschwitz, U. and Tho, Y. P. 1974. Chinone alsWehrsubstanzen bei einigen orientalischen Macrotermitinen. Insectes Soc. 21:231–234.

    Google Scholar 

  • Mednikova, T. K. 1991. Effect of caste differences on salivary gland functions in the termite Anacanthotermes ahngerianus. Zh. Evol. Biokhim. Fiziol. 27:86–91.

    Google Scholar 

  • Moore, B. P. 1968. Studies on the chemical composition and function of the cephalic gland secretion in Australian termites. J. Insect Physiol. 14:33–39.

    Google Scholar 

  • Noirot, C. 1969. Glands and secretions, pp. 89–123, in K. Krishna and F. Weesner (eds.). Biology of the Termites. Academic Press, New York.

    Google Scholar 

  • Noirot, C. 1992. Fromwood-to humus-feeding: An important trend in termite evolution, pp. 107–119, in J. Billen (ed.). Biology and Evolution of Social Insects. Leuven University Press, Leuven.

    Google Scholar 

  • Norris, D.M. 1970. Quinol stimulation and quinone deterrency of gustation by Scolytus multistriatus (Coleoptera: Scolytidae). Ann. Entomol Soc. Am. 63:476–478.

    Google Scholar 

  • Norris, D. M. 1976. Physico-chemical aspects of the effects of certain phytochemicals on insect gustation. Symp. Biol. Hung. 16:197–201.

    Google Scholar 

  • Olagbemiro, T. O., Lajide, L., Sani, K. M., and Staddon, B. W. 1988. 2-Hydroxy-5-methyl-1,4-benzoquinone from the salivary gland of the soldier termites Odontotermes magdalenae. Experientia 44:1022–1024.

    Google Scholar 

  • Oliver, A. E., Hincha, D. K., Crowe, L. M., and Crowe, J. H. 1998. Interactions of arbutin with dry and hydrated bilayers. Biochim. Biophys. Acta–Biomembranes 1370:87–97.

    Google Scholar 

  • Pasteels, J. and Bordereau, C. 1998. Releaser pheromones in termites, pp. 193–215, in R. Vander Meer, M. D. Breed, K. E. Espelie, and M. L. Winston (eds.). Pheromone Communication in Social Insects—Ants, Wasps, Bees, and Termites. Westview Press, Boulder. Colorado.

    Google Scholar 

  • Reinhard, J. 1998. Nahrungssuche und Nahrungsausbeute der Erdtermite Reticulitermes santonensis: Rolle chemischer Signale. BITÖK-Verlag, Bayreuth.

    Google Scholar 

  • Reinhard, J. and Kaib, M. 1995. Interaction of pheromones during food exploitation by the termite Schedorhinotermes lamanianus. Physiol. Entomol. 20:266–272.

    Google Scholar 

  • Reinhard, J. and Kaib, M. 2001a. Thin layer chromatography assessing feeding stimulation by labial gland secretion compared to synthetic chemicals in the subterranean termite Reticulitermes santonensis. J. Chem. Ecol. 27:175–187.

    Google Scholar 

  • Reinhard, J. and Kaib, M. 2001b. Food exploitation in termites: Indication for a general feeding stimulating signal in labial gland secretion of Isoptera.J. Chem. Ecol. 27:189–201.

    Google Scholar 

  • Reinhard, J., Hertel, H., and Kaib, M. 1997a. Feeding stimulating signal in labial gland secretion of the subterranean termite Reticulitermes santonensis. J. Chem. Ecol. 23:2371–2381.

    Google Scholar 

  • Reinhard, J., Hertel, H., and Kaib, M. 1997b. Systematic search for food in the subterranean termite Reticulitermes santonensis De Feytaud (Isoptera, Rhinotermitidae). Insectes Soc. 44:147–158.

    Google Scholar 

  • Reinhard, J., Lacey, M. J., and Lenz, M. Application of the natural phagostimulant hydroquinone in bait systems for termite management (Isoptera). Sociobiology (in press).

  • Schedel, A. and Kaib, M. 1987. Polyethism during foraging in Schedorhinotermes lamanianus in unprotected areas: The role of exocrine glands, p. 416, in J. Eder and H. Rembold (eds.). Chemistry and Biology of Social Insects. Verlag J. Peperny, Munich.

    Google Scholar 

  • Schlatterer, C. and Schaloske, R. 1996. Calmidazolium leads to an increase in the cytosolic Ca2C concentration in Dictyostelium discoideum by induction of Ca2C release from intracellular stores and influx of extracellular Ca2+. Biochem. J. 313:661–667.

    Google Scholar 

  • Stryer, L. 1995. Biochemistry, 4th ed. Freeman, New York.

    Google Scholar 

  • Tokuda, G., Watanabe, H., Matsumoto, T., and Noda, H. 1997. Cellulose digestion in the woodeating higher termite, Nasutitermes takasagoensis (Shiraki): Distribution of cellulases and properties of endo-β-1,4-glucanase. Zool. Sci. 14:83–93.

    Google Scholar 

  • Veivers, P. C., Musca, A. M., O'Brien, R. W., and Slaytor, M. 1982. Digestive enzymes of the salivary glands and gut of Mastotermes darwiniensis. Insect Biochem. 12:35–40.

    Google Scholar 

  • Veivers, P. C., MÜhlemann, R., Slaytor, M., Leuthold, R. H., and Bignell, D. E. 1991. Digestion, diet and polyethism in two fungus-growing termites: Macrotermes subhyalinus Rambur and M. michaelseni Sjöstedt. J. Insect Physiol. 37:675–682.

    Google Scholar 

  • Zar, J. H. 1974. Biostatistical Analysis. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Reinhard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinhard, J., Lacey, M.J., Ibarra, F. et al. Hydroquinone: A General Phagostimulating Pheromone in Termites. J Chem Ecol 28, 1–14 (2002). https://doi.org/10.1023/A:1013554100310

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013554100310

Navigation