Skip to main content
Log in

Multilamellar Liposomes and Solid-Supported Lipid Membranes (TRANSIL): Screening of Lipid-Water Partitioning Toward a High-Throughput Scale

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Lipid-water partitioning of 187 pharmaceuticals has been assessed with solid-supported lipid membranes (TRANSIL) in microwell plates and with multilamellar liposomes for a data comparison. The high-throughput potential of the new approach was evaluated.

Methods. Drugs were incubated at pH 7.4 with egg yolk lecithin membranes either on a solid support (TRANSIL beads) or in the form of multilamellar liposomes. Phase separation of lipid and water phase was achieved by ultracentrifugation in case of liposomes or by a short filtration step in case of solid-supported lipid membranes.

Results. Lipid-water partitioning data of both approaches correlate well without systematic deviations in the investigated lipophilicity range. The solid-supported lipid membrane approach provides high-precision data in an automated microwell-plate setup. The lipid composition of the solid-supported lipid membranes was varied to study the influence of membrane change on lipid-water partitioning. In addition, pH-dependent measurements have been performed with minimal experimental effort.

Conclusions. Solid-supported lipid membranes represent a valuable tool to determine physiologically relevant lipid-water partitioning data of pharmaceuticals in an automated setup and is well suited for high-throughput data generation in lead optimization programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. V. Pliska, B. Testa, and H. van de Waterbeemd (eds.), Lipophilicity in Drug Action and Toxicology, VCH Publishers, Weinheim, 1996.

    Google Scholar 

  2. N. Watari, Y. Sugiyama, N. Kaneniwa, and M. Hiura. Prediction of hepatic first-pass metabolism and plasma levels following intravenous and oral administration of barbiturates in the rabbit based on quantitative structure-activity relationships. J. Pharmacokinet. Biopharm. 16:279-301 (1988).

    Google Scholar 

  3. D. A. Smith, B. C. Jones, and D. K. Walker. Design of drugs involving the concepts of drug metabolism and pharmacokinetics. Med. Res. Rev. 16:243-266 (1996).

    Google Scholar 

  4. D. E. Clark. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J. Pharm. Sci. 88:807-814 (1999).

    Google Scholar 

  5. M. D. Wessel, P. C. Jurs, W. J. Tolan, and S. M. Muskal. Prediction of human intestinal adsorption of drug compounds from molecular structure. J. Chem. Inf. Comput. Sci. 38:726-735 (1988).

    Google Scholar 

  6. K. Palm, K. Luthman, A. L. Ungell, G. Strandlund, and P. Artursson. Correlation of drug absorption with molecular surface properties. J. Pharm. Sci. 85:32-39 (1996).

    Google Scholar 

  7. P. Ertl, B. Rohde, and P. Selzer. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 43:3714-3717 (2000).

    Google Scholar 

  8. Partition coefficient (n-octanol/water): skake-flask method. OECD Guideline 107, Organization for Economic Coordination and Development, Paris, France (1995).

  9. A. Leo, C. Hansch, and D. Elkins. Partition coefficients and their uses. Chem. Rev. 71:525-616 (1971).

    Google Scholar 

  10. C. Hansch, R. M. Muir, T. Fujita, P. P. Maloney, F. Geiger, and M. Streich. The correlation of biological activity of plant growth regulators and chloromycetin derivatives with hammett constants and partition coefficients. J. Am. Chem. Soc. 85:2817-2824 (1963).

    Google Scholar 

  11. J. A. Rogers and A. Wong. The temperature dependence and thermodynamics of partitioning of phenols in the n-octanol-water system. Int. J. Pharm. 6:339-348 (1980).

    Google Scholar 

  12. R. P. Austin, A. M. Davis, and C. N. Manners. Partitioning of ionizing molecules between aqueous buffers and phospholipid vesicles. J. Pharm. Sci. 84:1180-1183 (1995).

    Google Scholar 

  13. Pharmaceutical Preformulation, 1st ed., J. I. Wells (ed.), Ellis Horwood Ltd., London, 1988 p. 25.

    Google Scholar 

  14. G. M. Pauletti and H. Wunderli-Allenspach. Partiton coefficients in vitro: artificial membranes as a standardized distribution model. Eur. J. Pharm. Sci. 1:273-282 (1994).

    Google Scholar 

  15. C. Ottiger and H. Wunderli-Allenspach. Partition behaviour of acids and bases in a phosphatidyl choline liposome-buffer equilibrium dialysis system. Eur. J. Pharm. Sci. 5:223-231 (1997).

    Google Scholar 

  16. S. D. Krämer, A. Braun, C. Jakits-Dieser, and H. Wunderli-Allenspach. Towards the predictability of drug-lipid membrane interactions: the pH-dependent affinity of propranolol to phosphatidyl inositol containing liposomes. Pharm. Res. 5:739-744 (1998).

    Google Scholar 

  17. A. Avdeef. pH-metric log P. II. Refinement of partition coefficients and ionization constants of multiprotic substances. J. Pharm. Sci. 82:183-190 (1993).

    Google Scholar 

  18. A. Avdeef, K. J. Box, J. E. Comer, C. Hibbert, and K. Y. Tam. pH-metric logP 10. Determination of liposomal membrane-water partition coefficients of ionizable drugs. Pharm. Res. 15:209-215 (1998).

    Google Scholar 

  19. H. Liu, S. Ong, L. Glunz, and C. Pidgeon. Predicting drug-membrane interactions by HPLC: structural requirements of chromatographic surfaces. Anal. Chem. 67:3550-3557 (1995).

    Google Scholar 

  20. S. Ong, H. Liu, and C. Pidgeon. Immobilized-artificial-membrane chromatography: measurements of membrane partition coefficient and predicting drug membrane permeability. J. Chromatogr. A 728:113-128 (1996).

    Google Scholar 

  21. Partition coefficient (n-octanol/water), high performance liquid chromatography (HPLC) method. OECD Guideline 117. Organization for Economic Coordination and Development, Paris, France (1989).

  22. C. Pidgeon, S. Ong, H. Kiu, X. Qiu, M. Pidgeon, A. H. Dantzig, J. Munroe, W. J. Hornback, J. S. Kasher, L. Glunz, and T. Szczerba. IAM chromatography: an in vitro screen for predicting drug membrane permeability. J. Med. Chem. 38:590-594 (1995).

    Google Scholar 

  23. K. Balon, B. U. Riebesehl, and B. W. Muller. Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption. Pharm. Res. 16:882-888 (1999).

    Google Scholar 

  24. S. D. Krämer. Absorption prediction from physicochemical parameters. Pharm. Sci. Technol. Today 2:373-380 (1999).

    Google Scholar 

  25. C. Ottiger and H. Wunderli-Allenspach. Immobilized artificial membrane (IAM)-HPLC for partition studies of neutral and ionized acids and bases in comparison with the liposomal partition system. Pharm. Res. 16:643-650 (1999).

    Google Scholar 

  26. A. Loidl-Stahlhofen, A. S. Ulrich, S. Kaufmann, and T. M. Bayerl. Protein binding to supported lecithin bilayers controlled by the lipid phase state: a new concept for highly selective protein purification. Eur. Biophys. J. 25:151-153 (1996).

    Google Scholar 

  27. G. Vergeres, S. Manenti, T. Weber, and C. Sturzinger. The myristoyl moiety of myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein is embedded in the membrane. J. Biol. Chem. 270:19879-19887 (1995).

    Google Scholar 

  28. A. Loidl-Stahlhofen, A. Eckert, T. Hartmann, and M. Schoettner. Solid-supported lipid membranes as a tool for determination of membrane affinity: high-throughput screening of a physicochemical parameter. J. Pharm. Sci. 90:599-606 (2001).

    Google Scholar 

  29. A. Hatzelmann, J. Goossens, R. Fruchtmann, K. H. Mohrs, S. Raddatz, and R. Muller-Peddinghaus. Inversely-correlated inhibition of human 5-lipoxygenase activity by BAY X1005 and other quinoline derivatives in intact cells and a cell-free system—implications for the function of 5-lipoxygenase activating protein. Biochem. Pharmacol. 47:22259-22268 (1994).

    Google Scholar 

  30. G. Rouser, G. J. Nelson, S. Fleischer, and G. Simon. In D. Chapman (ed.), Biological Membranes, Vol 1: Physical Facts and Function, Academic Press, London, 1968.

    Google Scholar 

  31. D. A. Winkler and F. R. Burden. Holographic QSAR of benzodiazepines. Quant. Struct. Act. Relat. 17:224-231 (1998).

    Google Scholar 

  32. G. Betageri and J. A. Rogers. The liposome as a distribution model in QSAR studies. Int. J. Pharm. 46:95-102 (1988).

    Google Scholar 

  33. G. M. Pauletti and H. Wunderli, Allenspach. Partiton coefficients in vitro: artificial membranes as a standardized distribution model. Eur. J. Pharm. Sci. 1:273-282 (1994).

    Google Scholar 

  34. F. A. Gobas, J. M. Lahittete, G. Garofalo, W. Y. Shiu, and D. Mackay. A novel method for measuring membrane-water partition coefficients of hydrophobic organic chemicals: comparison with 1-octanol-water partitioning. J. Pharm. Sci. 77:265-272 (1988).

    Google Scholar 

  35. P. Schindler and H. R. Kamber. Die Acidität von Silanolgruppen. Helv. Chim. Acta 51:1781-1786 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loidl-Stahlhofen, A., Hartmann, T., Schöttner, M. et al. Multilamellar Liposomes and Solid-Supported Lipid Membranes (TRANSIL): Screening of Lipid-Water Partitioning Toward a High-Throughput Scale. Pharm Res 18, 1782–1788 (2001). https://doi.org/10.1023/A:1013343117979

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013343117979

Navigation