Skip to main content
Log in

Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a non-diffusive and contact discontinuity capturing scheme for linear advection and compressible Euler system. In the case of advection, this scheme is equivalent to the Ultra-Bee limiter of [24], [29]. We prove for the Ultra-Bee scheme a property of exact advection for a large set of piecewise constant functions. We prove that the numerical error is uniformly bounded in time for such prepared (i.e., piecewise constant) initial data, and state a conjecture of non-diffusion at infinite time, based on some local over-compressivity of the scheme, for general initial data. We generalize the scheme to compressible gas dynamics and present some numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Wang, H., Ewing, R. E., Qin, G., Lyons, S. L., Al-Lawatia, M., and Man, S. (1999). A family of eulerian-lagrangian localized adjoint methods for multi-dimensional advectionreaction equations. J.Comput.Phys. 152, 120–163.

    Google Scholar 

  2. Arora, M., and Roe, P. L., (1997). A well-behaved tvd limiter for high-resolution calculus of unsteady flow. J.Comput.Phys. 132(5), 3–11.

    Google Scholar 

  3. Karniadakis, G. E., Cockburn, B., and Shu, C. W. (1999). The development of discontinuous galerkin methods. In Shu, Cockburn, and Karniadakis (eds.), Discontinuous Galerkin Methods, Springer, Lecture Notes in Computational Science and Engineering.

  4. Hou, S., Cockburn, B., and Shu, C. W. (1990). TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws IV: The multidimensionnal case. Math.of Comp.

  5. Chainais-Hillairet, C. (1997). First and second order schemes for a hyperbolic equation: convergence and error estimate. In Benkhaldoun and Vilsmeier (eds.), Finite Volume for Complex Applications Problems and Perspectives, Hermes, Paris, pp. 137–144.

    Google Scholar 

  6. Després, B. (1997). Inégalité entropique pour un solveur conservatif du systéme de la dynamique des gaz en coordonnées de Lagrange. Comptes Rendus de l'Académie des Sciences, série 1 324, 1301–1306.

    Google Scholar 

  7. Després, B. (1997). Inégalités entropiques pour un solveur de type Lagrange+convection des équations de l'hydrodynamique. Technical report, CEA.

  8. Després, B. (1999). Discontinuous galerkin method for the numerical solution of euler equations in axisymmetric geometry. In Shu, Cockburn, and Karniadakis (eds.), Discontinuous Galerkin Methods, Lecture Notes in Computational Science and Engineering, Springer.

  9. Després, B. (2001). Invariance properties of lagrangian systems of conservation laws, approximate Riemann solvers and the entropy condition, to appear in Nümerische Mathematik.

  10. Steinhoff, J., Fan, M., and Wang, L. (2000). A new eulerian method for the computation of propagating sjort acoustic and electromagnetic pulses. J.Comput.Phys. 157, 683–706.

    Google Scholar 

  11. Godlewski, E., and Raviart, P.-A. (1991). Hyperbolic Systems of Conservation Laws, Ellipses.

  12. Godlewski, E., and Raviart, P.-A. (1995). Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer.

  13. Harten, A. (1978). The artificial compression method for computation of shocks and contact discontinuities: III. Math.Comp. 32(142), 363–389.

    Google Scholar 

  14. Harten, A. (1984). On a class of high resolution total-variation-stable finite-difference schemes. SIAM J.Numer.Anal. 21(1), 1–23.

    Google Scholar 

  15. Harten, A. (1989). ENO schemes with subcell resolution. J.Comput.Phys. 83, 148–184.

    Google Scholar 

  16. Harten, A., and Hyman, J. M. (1983). Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J.Comput.Phys. 50, 235–269.

    Google Scholar 

  17. Huynh, H. T. (1995). Accurate upwind methods for the euler equations. SIAM J.Numer.Anal. 32(5), 1565–1619.

    Google Scholar 

  18. Jiang, G.-S., and Shu, C.-W. (1996). Efficient implementqation of weighted ENO schemes. J.Comput.Phys. 126, 202–228.

    Google Scholar 

  19. Kurnagov, A., and Petrova, G. (2000). Central schemes and contact discontinuities. M2AN 34(6), 1259–1275.

    Google Scholar 

  20. Lagoutiére, F. (2000). Modélisation mathématique et résolution numérique de problémes de fluides compressibles à plusieurs constituants, PhD thesis, Université Paris-VI.

  21. Lagoutiére, F. (2001). Numerical resolution of scalar convex equations: explicit stability, entropy and convergence conditions, submitted to ESAIM, proceedings of CEMRACS 1999.

  22. Van Leer, B. (1974). Towards the ultimate conservative difference scheme, II. Monotonicity and conservation combined in a second-order scheme. J.Comput.Phys. 14, 361–376.

    Google Scholar 

  23. LeVeque, R. J. (1992). Numerical Methods for Conservation Laws, Birkhäuser.

  24. Roe, P. L. (1985). Some contribution to the modelling of discontinuous flows. Lectures in Appl.Math. 22, 163–193.

    Google Scholar 

  25. Shu, C.-W., and Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. J.Comput.Phys. 77, 439–471.

    Google Scholar 

  26. Shu, C.-W., and Osher, S. (1989). Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J.Comput.Phys. 83, 32–78.

    Google Scholar 

  27. Strikwerda, J. C. (1989). Finite Difference Schemes and Partial Differential Equations, Wadsworth & Brooks.

  28. Sweby, P. K. (1984). High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J.Numer.Anal. 21(5), 995–1011.

    Google Scholar 

  29. Toro, E. F. (1997). Riemann Solvers and Numerical Methods for Fluid Dynamics.A PracticalIntroduction, Springer.

  30. Vila, J.-P. (1988). High-order schemes and entropy condition for nonlinear hyperbolic systems of conservation laws, Math.Comput. 50(181), 53–73.

    Google Scholar 

  31. Yang, H. (1990). An artificial compression method for ENO schemes: the slope modification method. J.Comput.Phys. 89, 125–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Després, B., Lagoutière, F. Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics. Journal of Scientific Computing 16, 479–524 (2001). https://doi.org/10.1023/A:1013298408777

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013298408777

Navigation