Skip to main content
Log in

Tree Species Composition in European Pristine Forests: Comparison of Stand Data to Model Predictions

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The degree of general applicability across Europe currently achieved with several forest succession models is assessed, data needs and steps for further model development are identified and the role physiology based models can play in this process is evaluated. To this end, six forest succession models (DISCFORM, ForClim, FORSKA-M, GUESS, PICUS v1.2, SIERRA) are applied to simulate stand structure and species composition at 5 European pristine forest sites in different climatic regions. The models are initialized with site-specific soil information and driven with climate data from nearby weather stations. Predicted species composition and stand structure are compared to inventory data. Similarity and dissimilarity in the model results under current climatic conditions as well as the predicted responses to six climate change scenarios are discussed. All models produce good results in the prediction of the right tree functional types. In about half the cases, the dominating species are predicted correctly under the current climate. Where deviations occur, they often represent a shift of the species spectrum towards more drought tolerant species. Results for climate change scenarios indicate temperature driven changes in the alpine elevational vegetation belts at humid sites and a high sensitivity of forest composition and biomass of boreal and temperate deciduous forests to changes in precipitation as mediated by summer drought. Restricted generality of the models is found insofar as models originally developed for alpine conditions clearly perform better at alpine sites than at boreal sites, and vice versa. We conclude that both the models and the input data need to be improved before the models can be used for a robust evaluation of forest dynamics under climate change scenarios across Europe. Recommendations for model improvements, further model testing and the use of physiology based succession models are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber, J. D., Botkin, D. B., and Melillo, J. M.: 1979, ‘Predicting the Effects of Different Harvesting Regimes on Productivity and Yield in Northern Hardwoods’, Can. J. Forest Res. 9, 10–14.

    Google Scholar 

  • Anonymous: 1995, ‘Guide to Field Trip No. 2’, Conference on Climate Change, Biodiversity and Boreal Forest Ecosystems, Joensuu, Finland, 30 July–5 August 1995, International Boreal Forest Research Association (IBFRA) and Finnish Forest Research Institute, Helsinki, Finland.

  • Batjes, N. H.: 1996, ‘Total Carbon and Nitrogen in the Soils of the World’, European Journal of Soil Science 47, 151–163.

    Google Scholar 

  • Bernadzki, E., Bolibok, L., Brzeziecki, B., Zajaczkowski, J., and Zybura, H.: 1998a, ‘Compositional Dynamics of Natural Forests in the Białowieża National Park, Northeastern Poland’, J. Veg. Sci. 9, 229–238.

    Google Scholar 

  • Bernadzki, E., Bolibok, L., Brzeziecki, B., Zajaczkowski, J., and Zybura, H.: 1998b, ‘Rozwoj drewostanow naturalnych Bialowieskiego Parku Narodowego’, Warszawa, p. 271.

  • Bürger, G.: 1997, ‘On the Disaggregation of Climatological Means and Anomalies’, Clim. Res. 8, 183–194.

    Google Scholar 

  • Bugmann, H.: 1994, ‘On the Ecology of Mountainous Forests in a Changing Climate: A Simulation Study’, Ph.D. Thesis # 10638 (p. 258), ETH Zürich.

  • Bugmann, H.: 1996, ‘A Simplified Forest Model to Study Species Composition along Climate Gradients’, Ecology 77, 2055–2074.

    Google Scholar 

  • Bugmann, H.: 1997a, ‘An Efficient Method for Estimating the Steady State Species Composition of Forest Gap Models’, Can. J. Forest Res. 27, 551–556.

    Google Scholar 

  • Bugmann, H.: 1997b, ‘Sensitivity of Forests in the European Alps to Future Climatic Change’, Clim. Res. 8, 35–44.

    Google Scholar 

  • Bugmann, H.: 2001, ‘A Review of Forest Gap Models’, Clim. Change 51, 259–305.

    Google Scholar 

  • Bugmann, H. and Cramer, W.: 1998, ‘Improving the Behaviour of Forest Gap Models along Drought Gradients’, For. Ecol. Manage. 103, 247–263.

    Google Scholar 

  • Bugmann, H. and Solomon, A. M.: 2000, ‘Explaining Forest Composition and Biomass across Multiple Biogeographical Regions’, Ecol. Appl. 9, 95–114.

    Google Scholar 

  • Bugmann, H. and Pfister, C.: 2000, ‘Impacts of Interannual Climate Variability on Past and Future Forest Composition’, Regional Environmental Change 1, 112–125.

    Google Scholar 

  • Bugmann, H., Yan, X., Sykes, M. T., Martin, P., Lindner, M., Desanker, P. V., and Cumming, S. G.: 1996, ‘A Comparison of Forest Gap Models: Model Structure and Behaviour’, Clim. Change 34, 289–313.

    Google Scholar 

  • Bugmann, H. K. M., Wullschleger, S. D., Price, D. T., Ogle, K., Clark, D. F., and Solomon, A. M.: 2001, ‘Comparing the Performance of Forest Gap Models in North America’, Clim. Change 51, 349–388.

    Google Scholar 

  • Cannell, M. G. R., Thornley, J. H. M., Mobbs, D. C., and Friend, A. D.: 1998, ‘U.K. Conifer Forests May Be Growing Faster in Response to Increased N Deposition, Atmospheric CO2 and Temperature’, Forestry 71, 277–296.

    Google Scholar 

  • FAO, Land and Water Development Division: 1995, ‘FAO/UNESCO-Soil map of the world’, Rome.

  • Frei, E., Voegt, U., Flueckiger, R., Brunner, H., Schai, F., and Haeberli, R.: 1980, ‘Bodeneignungskarte der Schweiz’, S.u.L.W. Eidg. Forschungsanstalt für landwirtschaftlichen Pflanzenbau/ Eidg. Forschungsanstalt für Wald, editor, Bern.

  • Grote, R. and Suckow, F.: 1998, ‘Integrating Dynamic Morphological Properties into Forest Growth Modelling. I. Effects on Water Balance and Gas Exchange’, Forest Ecology and Management 112, 101–119.

    Google Scholar 

  • Haxeltine, A. P. and Prentice, I. C.: 1996, ‘BIOME3: An Equilibrium Terrestrial Biosphere Model Based on Ecophysiological Constraints, Resource Availability and Competition among Plant Functional Types’, Global Biogeochem. Cycles 10, 693–709.

    Google Scholar 

  • Hillgarter, F.-W.: 1971, ‘Waldbauliche und ertragskundliche Untersuchungen im subalpinen Fichtenurwald Scatlé/Brigels’, ETH, Zürich, p. 80.

    Google Scholar 

  • Hulme, M., Conway, D., Jones, P. D., Jiang, T., and Barrow, F.: 1995, ‘Construction of a 1961–1990 European Climatology for Climate Change Modelling and Impact Applications’, Int. J. Clim. 15, 1333–1363.

    Google Scholar 

  • Kattenberg, A., Giorgi, F., Grassl, H., Meehl, G. A., Mitchell, J. F. B., Stouffer, R. J., Tokioka, T., Weaver, A. J., and Wigley, T. M. L.: 1996, ‘Climate Models – Projections of Future Climate’, in Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A. and Maskell, K. (eds.), Climate Change 1995 – The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., pp. 285–357.

    Google Scholar 

  • Kaufmann, E.: 1999, ‘Prognosen und Nutzungsszenarien’, in Brassel, P. and Lischke, H., Schweizerisches Landesforstinventar: Methoden und Modelle der Zweitaufnahme 1993–1995, pp. 256–267.

  • Keane, R. E., Morgan, P., and Running, S.W.: 1996, ‘FIRE-BGC – AMechanistic Ecological Process Model for Simulating Fire Succession on Coniferous Forest Landscapes of the Northern Rocky Mountains’, USDA Forest Service Research Paper INT-RP- 484, p. 122.

    Google Scholar 

  • Kellomäki, S. and Wang, K. Y.: 2000, ‘Modelling and Measuring Transpiration from Scots Pine with Increased Temperature and Carbon Dioxide Enrichment’, Ann. Botany 85, 263–278.

    Google Scholar 

  • Kienast, F.: 1991, ‘Simulated Effects of Increasing Atmospheric CO2 and Changing Climate on the Successional Characteristics of Alpine Forest Ecosystems’, Landscape Ecology 5, 225–238.

    Google Scholar 

  • Kienast, F.: 1997, ‘Bioklimatische Karten der Schweiz’, WSL.

  • Kienast, F. and Kräuchi, N.: 1991, ‘Simulated Successional Characteristics of Managed and Unmanaged Low-Elevation Forests in Central Europe’, For. Ecol. Manage. 42, 49–61.

    Google Scholar 

  • Kienast, F. and Kuhn, N.: 1989, ‘Simulating Forest Succession along Ecological Gradients in Southern Central Europe’, Vegetatio 79, 7–20.

    Google Scholar 

  • Lasch, P. and Lindner, M.: 1995, ‘Application of Two Forest Succession Models at Sites in North East Germany’, J. Biogeogr. 22, 485–492.

    Google Scholar 

  • Lasch, P., Suckow, F., Bürger, G., and Lindner, M.: 1998, ‘Sensitivity Analysis of a Forest Gap Model Concerning Current and Future Climate Variability’, in Beniston, M. and Innes, J. (eds.), Past, Present and Future Climate Variability and Extremes: The Impacts on Forests, Springer, Heidelberg, pp. 273–288.

    Google Scholar 

  • Lasch, P., Lindner, M., Ebert, B., Flechsig, M., Gerstengarbe, F.-W., Suckow, F., and Werner, P. C.: 1999, ‘Regional Impact Analysis of Climate Change on Natural and Managed Forests in the Federal State of Brandenburg, Germany’, Environ. Model. and Assess. 4, 273–286.

    Google Scholar 

  • Leemans, R. and Prentice, I. C.: 1987, ‘Description and Simulation of Tree-Layer Composition and Size Distribution in a Primaeval Picea-Pinus Forest’, Vegetatio 69, 147–156.

    Google Scholar 

  • Leibundgut, H.: 1993, ‘Europäische Urwälder’, Haupt, Bern, p. 260.

    Google Scholar 

  • Lemée, G.: 1978, ‘La Hêtraie Naturelle de Fontainebleau’, in Lamotte, M. and Bourlière, F. (eds.), Structure et Fonctionnement des Ecosystèmes Terrestres, Masson, Paris, pp. 75–128.

    Google Scholar 

  • Lemée, G.: 1990, ‘Les réserves biologiques de la Tillaie et du Gros-Fouteau en forêt de Fontainebleau, écocomplexes climatiques’, Bull. Soc. Bot. Fr. 137, 47–62.

    Google Scholar 

  • Lexer, M. J. and Hönninger, K.: 1998a, ‘Defining the Physiological Amplitude of Alpine Tree Species Using the Combined Network of Forest Inventory Data, Soil and Meteorological Data’, Ecology 29, 383–387.

    Google Scholar 

  • Lexer, M. J. and Hönninger, K.: 1998b, ‘Simulated Effects of Bark Beetle Infestations on Stand Dynamics in Picea abies Stands: Coupling a Patch Model and a Stand Risk Model’, in Beniston, M. and Innes, J. L. (eds.), The Impacts of Climate Variability on Forests. Lecture Notes in Earth Sciences 74, Springer, pp. 289–308.

  • Lexer, M. J. and Hönninger, K.: 1998c, ‘Estimating Physical Soil Parameters for Sample Plots of Large Scale Forest Inventories’, For. Ecol. Manage. 111, 231–247.

    Google Scholar 

  • Lexer, M. J. and Hönninger, K.: 2001, ‘A Modified 3D-PatchModel for Spatially Explicit Simulation of Vegetation Composition in Heterogenous Landscapes’, For. Ecol. Manage. 144, 43–65.

    Google Scholar 

  • Linder, P., Elfving, B., and Zackrisson, O.: 1997, ‘Stand Structure and Successional Trends in Virgin Boreal Forest Reserves in Sweden’, For. Ecol. Manage. 98, 17–33.

    Google Scholar 

  • Lindner, M.: 2000, ‘Developing Adaptive Forest Management Strategies to Cope with Climatic Change’, Tree Physiology 20, 299–307.

    Google Scholar 

  • Lindner, M., Bugmann, H., Lasch, P., Flechsig, M., and Cramer, W.: 1997a, ‘Regional Impacts of Climatic Change on Forests in the State of Brandenburg, Germany’, Agric. For. Meteorol. 84, 123–135.

    Google Scholar 

  • Lindner, M., Lasch, P., and Cramer, W.: 1996, ‘Application of a Forest Succession Model to a Continentality Gradient through Central Europe’, Clim. Change 34, 191–199.

    Google Scholar 

  • Lindner, M., Sievänen, R., and Pretzsch, H.: 1997b, ‘Improving the Simulation of Stand Structure in a Forest Gap Model’, For. Ecol. Manage. 95, 183–195.

    Google Scholar 

  • Lischke, H., Löffler, T. J., and Fischlin, A.: 1998b, ‘Aggregation of Individual Trees and Patches in Forest Succession Models: Capturing Variability with Height Structured, Random, Spatial Distributions’, Theoretical Population Biology 54, 213–226.

    Google Scholar 

  • Lischke, H., Guisan, A., Fischlin, A., Williams, J., and Bugmann, H.: 1998a, ‘Vegetation Responses to Climate Change in the Alps – Modeling Studies’, in Cebon, P., Dahinden, U., Davies, H., Imboden, D., and Jaeger, C. (eds.), A View from the Alps: Regional Perspectives on Climate Change, MIT Press, pp. 309–350.

  • Löffler, T. J. and Lischke, H.: 2001, ‘Incorporation and Influence of Variability in an Aggregated Forest Model’, Natural Resource Modeling 14, 103–177.

    Google Scholar 

  • Lotter, A. F. and Kienast, F.: 1992, ‘Validation of a Forest Succession Model by Means of Annually Laminated Sediments’, Geological Survey of Finland, Special Paper 14, 25–31.

    Google Scholar 

  • Mouillot, F., Rambal, S., and Lavorel, S.: 2001, ‘A Generic Process Based Simulator for Mediterranean Landscapes (SIERRA)’, Forest Ecology and Management 147, 75–97.

    Google Scholar 

  • Norby, R. J., Ogle, K., Curtis, P. S., Badeck, F.-W., Huth, A., Hurtt, G. C., Kohyama, T., and Peñuelas, J.: 2001, ‘Aboveground Growth and Competition in Forest Gap Models: An Analysis for Studies of Climatic Change’, Clim. Change 51, 415–447.

    Google Scholar 

  • Pitman, A. J. and Henderson-Sellers, A.: 1998, ‘Recent Progress and Results from the Project for the Intercomparison of Landsurface Parameterization Schemes’, Journal of Hydrology 213, 128–135.

    Google Scholar 

  • Pontailler, J.-Y.: 1979, ‘La regeneration du hêtre en forêt de Fontainebleau, ses relations avec les conditions hydriques stationelles’, Thesis, Université de Paris-Sud, Orsay, p. 98.

    Google Scholar 

  • Pontailler, J.-Y., Faille, A., and Lemée, G.: 1997, ‘Storms Drive Successional Dynamics in Natural Forests: A Case Study in Fontainebleau Forest (France)’, For. Ecol. Manage. 98, 1–15.

    Google Scholar 

  • Prentice, I. C. and Leemans, R.: 1990, ‘Pattern and Process and the Dynamics of Forest Structure: A Simulation Approach’, J. Ecol. 78, 340–355.

    Google Scholar 

  • Prentice, I. C., Sykes, M. T., and Cramer, W.: 1993, ‘A Simulation Model for the Transient Effects of Climate Change on Forest Landscapes’, Ecol. Modelling 65, 51–70.

    Google Scholar 

  • Price, D. T., Zimmermann, N. E., van der Meer, P. J., Lexer, M. J., Leadley, P., Jorritsma, I. T. M., Schaber, J., Clark, D. F., Lasch, P., McNulty, S., Wu, J., and Smith, B.: 2001, ‘Regeneration in Gap Models: Priority Issues for Studying Forest Responses to Climate Change’, Clim. Change 51, 475–508.

    Google Scholar 

  • Richard, F. and Lüscher, P.: 1983, 1995, ‘Physikalische Eigenschaften der Böden der Schweiz’, Eidg. Anstalt für das forstl. Versuchswesen, Birmensdorf.

  • Richard, F., Lüscher, P., and Strobel, T.: 1978, 1981, ‘Physikalische Eigenschaften der Böden der Schweiz’, Eidg. Anstalt für das forstl. Versuchswesen, Birmensdorf.

  • Shao, G., Bugmann, H. and Yan, X.: 2001, ‘A Comparative Analysis of the Structure and Behavior of Three Gap Models at Sites in Northeastern China’, Clim. Change 51, 389–413.

    Google Scholar 

  • Smith, B., Prentice, I. C., and Sykes, M.: 2001, Representation of Vegetation Dynamics in Modelling of Terrestrial Ecosystems: Comparing Two Contrasting Approaches within European Climate Space’, Global Ecol. Biogeog. 10, 621–638.

    Google Scholar 

  • Tüxen, R.: 1956, ‘Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung’, Angewandte Pflanzensoziologie 13, 5–42.

    Google Scholar 

  • Wullschleger, S. D., Jackson, R. B., Currie, W. S., Friend, A. D., Luo, Y., Mouillot, F., Pan, Y., and Shao, G.: 2001, ‘Below-Ground Processes in Gap Models for Simulating Forest Response to Global Change’, Clim. Change 51, 449–473.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badeck, FW., Lischke, H., Bugmann, H. et al. Tree Species Composition in European Pristine Forests: Comparison of Stand Data to Model Predictions. Climatic Change 51, 307–347 (2001). https://doi.org/10.1023/A:1012577612155

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012577612155

Keywords

Navigation