Skip to main content
Log in

Different nitrogen sources and growth responses of Spirulina platensis in microenvironments

  • Biography
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Spirulina platensis was cultivated, in comparative studies, using several sources of nitrogen. The standard source used (sodium nitrate) was the same as that used in the synthetic medium Zarrouk, whereas the alternative nitrogen sources consisted of ammonium nitrate, urea, ammonium chloride, ammonium sulphate or acid ammonium phosphate. The initial nitrogen concentrations tested were 0.01, 0.03 and 0.05 M in an aerated photobioreactor at 30 °C, with an illuminance of 1900 lux, and 12 h-light/12 h-dark photoperiod over a period of 672 h. Maximum biomass was produced in medium containing sodium nitrate (0.01–0.03–0.05 M), followed by ammonium nitrate (0.01 M) and urea (0.01 M). The final biomass concentrations were 1.992 g l−1 (0.03 M sodium nitrate), 1.628 g l−1 (0.05 M sodium nitrate), 1.559 g l−1 (0.01 M sodium nitrate), 0.993 g l−1 (0.01 M ammonium nitrate) and 0.910 g l−1 (0.01 M urea). This suggested that it is possible to utilize nitrogen sources other than sodium nitrate for growing S. platensis, in order to decrease the production costs of scaled up projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • AOAC. 1995 Official Methods of Analysis, 16th edn. Arlington, USA: Association of Official Analytical Chemists. ISBN 0–935584–54–4.

    Google Scholar 

  • Becker, E.W. 1994 Microalgae. Biotechnology and Microbiology. Cambridge: Cambridge University Press. ISBN 0–521–35020–4.

    Google Scholar 

  • Chen, F. & Zhang, Y. 1997 High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme and Microbial Technology 20, 221–224.

    Google Scholar 

  • Cohen, Z., Vonshak, A. & Richmond, A. 1987 Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry 26, 2255–2258.

    Google Scholar 

  • Costa, J.A.V., Linde, G.A., Atala, D.I.P., Mibieli, G.M. & Krüger, R.T. 2000 Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms. World Journal of Microbiology and Biotechnology 16, 15–18.

    Google Scholar 

  • Faintuch, B.L., Sato, S. & Aquarone, E. 1992 Emprego de Algumas Fontes Nitrogenadas na Obtenção de Biomassa de Oscillatoria limnetica. Revista de Microbiologia 23, 32–36.

    Google Scholar 

  • Gibbs, W.W. 1995 Sewage treatment plants — algae offer a cheaper way to clean up wastewater. Scientific American 273, 27–28.

    Google Scholar 

  • Hayashi, W. 1996 Calcium Spirulan, na inhibitor of developed virus replication, from a blue-green alga Spirulina. Journal of Natural Products 59, 83–87.

    PubMed  Google Scholar 

  • Henrikson, R. 1994 Microalga SpirulinaSuperalimento del futuro. Barcelona: Ediciones Urano S.A. ISBN 84–7953–047–2.

    Google Scholar 

  • Huang, Y.S., Cunnane, S.C., Horrobin, D.F. & Davignon, J. 1982 Most biological effects of zinc deficiency corrected by gammalinolenic acid (18:3-omega-6) but not by linolenic-acid (18:2omega-6). Atherosclerosis 41, 193–207.

    PubMed  Google Scholar 

  • Iwata, K. 1990 Effects of Spirulina on plasma lipoprotein lipase activity in fructose-induced hyperlipidemic rats. Journal of Nutritional Science and Vitaminology 36, 165–171.

    PubMed  Google Scholar 

  • Kaplan, D., Richmond, A.E., Dubynski, Z. & Aaronson, S. 1990 Algal nutrition. In Handbook of Microalgal Mass Culture, eds. Richmond, A. pp. 147–198. Boca Raton: CRC Press. ISBN 0–8493–3240–0.

    Google Scholar 

  • Manabe, E., Hirano, M., Takano, H., Ishikawa-Doi, N., Sode, K. & Matsunaga, T. 1992 Influence of Ammonium Chloride on Growth and Fatty Acid production by Spirulina platensis. Applied Biochemistry and Biotechnology 34/35, 273–281.

    Google Scholar 

  • Meeks, J.C., Wycoff, K.L., Chapman, J.S. & Enderlin, C.S. 1983 Regulation of expression of nitrate and dinitrogen assimilation by Anabaena species. Applied and Environmental Microbiology 45 , 1351–1359.

    Google Scholar 

  • Nayaka, N. 1988 Cholesterol lowering effect of Spirulina. Nutrition Reports International 37, 1329–1337.

    Google Scholar 

  • Odum, E.P. 1983 Basic Ecology. Philadelphia: Saunders College Publishing. ISBN 0–03–058414–0.

    Google Scholar 

  • Olguin, E.J., Hermlndez, B., Araus, A., Camacho, R., Gonzalez, R., Ramires, M.E., Galicia, S. & Mercado, G. 1994 Simultaneous highbiomass protein production and nutrient removal using Spirulina maxima in sea water supplemented with anaerobic effluents. World Journal of Microbiology and Biotechnology 10, 576–578.

    Google Scholar 

  • Richmond, A. 1990 Handbook of Microalgal Mass Culture. Boca Raton: CRC Press. ISBN 0–8493–3240–0.

    Google Scholar 

  • TÔrres, R.C.O., Sant'anna, E.S., Kretzschmar, M. & Oguari, P.J. 1998 Growth of Spirulina maxima using rice straw ashes as culture medium. Revista de Microbiologia 29, 7–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieira Costa, J.A., Cozza, K.L., Oliveira, L. et al. Different nitrogen sources and growth responses of Spirulina platensis in microenvironments. World Journal of Microbiology and Biotechnology 17, 439–442 (2001). https://doi.org/10.1023/A:1011925022941

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011925022941

Navigation