Skip to main content
Log in

PEPT2-Mediated Uptake of Neuropeptides in Rat Choroid Plexus

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The peptide transporter PEPT2 was recently shown to be functionally active in rat choroid plexus, suggesting that it may play a role in neuropeptide homeostasis in the cerebrospinal fluid. This study, therefore, examined the role of PEPT2 in mediating neuropeptide uptake into choroid plexus.

Methods. Whole-tissue rat choroid plexus uptake studies were performed on GlySar in the absence and presence of neuropeptides and on carnosine.

Results. The neuropeptides NAAG, CysGly, GlyGln, kyotorphin, and carnosine inhibited the uptake of radiolabeled GlySar at 1.0 mM concentrations. In contrast, TRH, [D-Arg2]-kyotorphin, glutathione, and homocarnosine did not inhibit GlySar uptake. Kyotorphin, an analgesic, was a competitive inhibitor of GlySar with a Ki of 8.0 μM. The direct uptake of carnosine was also shown to be mediated by PEPT2 in isolated choroid plexus (Km = 39.3 μM; Vmax = 73.9 pmol/mg/min). Radiolabeled carnosine uptake was inhibited by 1.0 mM concentrations of GlySar or carnosine but not homocarnosine, L-histidine, or β-alanine.

Conclusions. These findings indicate that PEPT2 mediates the uptake of a diverse group of neuropeptides in choroid plexus, and suggests a role for PEPT2 in the regulation of neuropeptides, peptide fragments, and peptidomimetics in cerebrospinal fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Döring, J. Walter, J. Will, M. Focking, M. Boll, S. Amasheh, W. Clauss, and H. Daniel. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J. Clin. Invest. 101:2761-2767 (1998).

    Google Scholar 

  2. H. Daniel and M. Herget. Cellular and molecular mechanisms of renal peptide transport. Am. J. Physiol. 273:F1-8 (1997).

    Google Scholar 

  3. H. Shen, D. E. Smith, T. Yang, Y.G. Huang, J. B. Schnermann, and F. C. Brosius III. Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney. Am. J. Physiol. 276:F658-665 (1999).

    Google Scholar 

  4. U. V. Berger and M. A. Hediger. Distribution of peptide transporter PEPT2 mRNA in the rat nervous system. Anat. Embryol. (Berl) 199:439-449 (1999).

    Google Scholar 

  5. A. Novotny, J. Xiang, W. Stummer, N. S. Teuscher, D. E. Smith, and R. F. Keep. Mechanisms of 5-aminolevulinic acid uptake at the choroid plexus. J. Neurochem. 75:321-328 (2000).

    Google Scholar 

  6. T. Yamashita, S. Shimada, W. Guo, K. Sato, E. Kohmura, T. Hayakawa, T. Takagi, and M. Tohyama. Cloning and functional expression of a brain peptide/histidine transporter. J. Biol. Chem. 272:10205-10211 (1997).

    Google Scholar 

  7. N. S. Teuscher, A. Novotny, R. F. Keep, and D. E. Smith. Functional evidence for presence of PEPT2 in rat choroid plexus: Studies with glycylsarcosine. J. Pharmacol. Exp. Ther. 294:494-499 (2000).

    Google Scholar 

  8. J. Laterra, R. F. Keep, A. L. Betz, and G. W. Goldstein. Blood-brain-cerebrospinal fluid barriers. In G. J. Siegel, B. W. Agranoff, R. W. Albers, S. K. Fisher, and M. D. Uhler (eds.), Basic Neurochemistry: Molecular, Cellular and Medical Aspects, Lippincott-Raven Publishers, Philadelphia, 1999 pp. 671-689.

    Google Scholar 

  9. M. Segal. The blood-CSF barrier and the choroid plexus. In W. M. Pardridge (ed.) Introduction to the blood-brain barrier: Methodology, Biology, and Pathology, Cambridge University Press, Cambridge, U.K., 1998 pp. 251-258.

    Google Scholar 

  10. F. H. Leibach, and V. Ganapathy. Peptide transporters in the intestine and the kidney. Annu. Rev. Nutr. 16:99-119 (1996).

    Google Scholar 

  11. Y. Cheng, and W. H. Prusoff. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (150) of an enzymatic reaction. Biochem. Pharmacol. 22:3099-3108 (1973).

    Google Scholar 

  12. B.V. Zlokovic, M. B. Segal, D. J. Begley, H. Davson, and L. Rakic. Permeability of the blood-cerebrospinal fluid and blood-brain barriers to thyrotropin-releasing hormone. Brain Res. 358:191-199 (1985).

    Google Scholar 

  13. T. Fujita, T. Kishida, N. Okada, V. Ganapathy, F. H. Leibach, and A. Yamamoto. Interaction of kyotorphin and brain peptide transporter in synaptosomes prepared from rat cerebellum: Implication of high affinity type H+/peptide transporter PEPT2 mediated transport system. Neurosci. Lett. 271:117-120 (1999).

    Google Scholar 

  14. F. Döring, J. Will, S. Amasheh, W. Clauss, H. Ahlbrecht, and H. Daniel. Minimal molecular determinants of substrates for recognition by the intestinal peptide transporter. J. Biol. Chem. 273:23211-23218 (1998).

    Google Scholar 

  15. H. Yajima, H. Ogawa, H. Ueda, and H. Takagi. Studies on peptides. XCIV. Synthesis and activity of kyotorphin and its analogs. Chem. Pharm. Bull. 28:1935-1938 (1980).

    Google Scholar 

  16. L. S. Goodman, A. Gilman, J. G. Hardman, A. G. Gilman, and L. E. Limbird. Goodman & Gilman's the Pharmacological Basis of Therapeutics, McGraw-Hill Health Professions Division, New York, 1996.

    Google Scholar 

  17. K. Nishimura, K. Kaya, T. Hazato, H. Ueda, M. Satoh, and H. Takagi. Kyotorphin like substance in human cerebrospinal fluid of patients with persistent pain. Masui 40:1686-1690 (1991).

    Google Scholar 

  18. T. Arima, Y. Kitamura, T. Nishiya, T. Taniguchi, H. Takagi, and Y. Nomura. Effects of kyotorphin (L-tyrosyl-L-arginine) on [3H]NG-nitro-L-arginine binding to neuronal nitric oxide synthase in rat brain. Neurochem. Int. 30:605-611 (1997).

    Google Scholar 

  19. V. Ganapathy, and F. H. Leibach. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit: Studies with L-carnosine and glycyl-L-proline. J. Biol. Chem. 258:14189-14192 (1983).

    Google Scholar 

  20. S. Silbernagl. Amino acids and oligopeptides. In D.W. Seldin and G. Giebisch (eds.), The Kidney: Physiology and Pathophysiology, Second Edition, Raven Press, Ltd., New York, 1992 pp. 2889-2920.

    Google Scholar 

  21. A. Bourne, K. Barnes, B. A. Taylor, A. J. Turner, and A. J. Kenny. Membrane peptidases in the pig choroid plexus and on other cell surfaces in contact with the cerebrospinal fluid. Biochem. J. 259:69-80 (1989).

    Google Scholar 

  22. C. E. Johanson, Z. Parandoosh, and Q. R. Smith. C1-HCO3 exchange in choroid plexus: Analysis by the DMO method for cell pH. Am. J. Physiol. 249:F478-484 (1985).

    Google Scholar 

  23. V. A. Murphy, and C. E. Johanson. Na+-H+ exchange in choroid plexus and CSF in acute metabolic acidosis or alkalosis. Am. J. Physiol. 258:F1528-1537 (1990).

    Google Scholar 

  24. H. Wang, Y. J. Fei, V. Ganapathy, and F. H. Leibach. Electrophysiological characteristics of the proton-coupled peptide transporter PEPT2 cloned from rat brain. Am. J. Physiol. 275:C967-975 (1998).

    Google Scholar 

  25. H. Daniel, E. L. Morse, and S. A. Adibi. Determinants of substrate affinity for the oligopeptide/H+ symporter in the renal brush border membrane. J. Biol. Chem. 267:9565-9573 (1992).

    Google Scholar 

  26. J. T. Huang. Accumulation of peptide Tyr-D-Ala-Gly by choroid plexus during ventriculocisternal perfusion of rat brain. Neurochem. Res. 7:1541-1548 (1982).

    Google Scholar 

  27. M. Lucas. Determination of acid surface pH in vivo in rat proximal jejunum. Gut 24:734-739 (1983).

    Google Scholar 

  28. L. C. Floren, I. Bekersky, L. Z. Benet, Q. Mekki, D. Dressler, J. W. Lee, J. P. Roberts, and M. F. Hebert. Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin. Pharmacol. Ther. 62:41-49 (1997).

    Google Scholar 

  29. C. Shu, H. Shen, R. F. Keep, and D. E. Smith. Role of PEPT2 in peptide/mimetic trafficking at the blood-CSF barrier: Studies in rat choroid plexus epithelial cells in primary culture. AAPS PharmSci. Suppl. 2(4):A1320 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teuscher, N.S., Keep, R.F. & Smith, D.E. PEPT2-Mediated Uptake of Neuropeptides in Rat Choroid Plexus. Pharm Res 18, 807–813 (2001). https://doi.org/10.1023/A:1011088413043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011088413043

Navigation