Skip to main content
Log in

Brain Metabolic Effects of Acute Nicotine

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

(−)Nicotine acetylcholine receptors are located on both nerve cell bodies and synaptic terminals, are permeable to calcium, and function perhaps predominantly by facilitating the release of neurotransmitters and neuropeptides. The behavioral rewards from (−)nicotine and perhaps addiction appear to be related to dopamine release. 31P NMR analysis reveals subcutaneously administered (−)nicotine produces acute alterations in brain membrane phospholipid and high-energy phosphate metabolism of Fischer 344 rats. These metabolic responses to (−)nicotine could contribute to nicotine's behavioral effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Henningfield, J. E., Stapleton, J. M., Benowitz, N. L., Grayson, R. F., and London, E. D. 1993. Higher levels of nicotine in arterial than in venous blood after cigarette smoking. Drug Alcohol Depend. 33:23–29.

    Google Scholar 

  2. Taioli, E. and Wynder, E. L. 1991. Affect of the age at which smoking begins on frequency of smoking in adulthood. N. Engl. J. Med. 325:968–969.

    Google Scholar 

  3. Lena, C. and Changeux, J.-P. 1993. Allosteric modulations of the nicotinic acetylcholine receptor. Trends Neurosci. 16:181–186.

    Google Scholar 

  4. Collins, A. C., Luo, Y., Selvaag, S., and Marks, M. J. 1994. Sensitivity to nicotine and brain nicotinic receptors are altered by chronic nicotine and mecamylamine infusion. J. Pharmacol. Exp. Ther. 271:125–133.

    Google Scholar 

  5. Benwell, M. E. M., Balfour, D. J. K., and Anderson, J. M. 1988. Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J. Neurochem. 50:1243–1247.

    Google Scholar 

  6. Peng, X., Gerzanich, V., Anand, R., Whiting, P. J., and Lindstrom, J. 1994. Nicotine-induced increase in neuronal nicotinic receptors results from a decrease in the rate of receptor turnover. Mol. Pharmacol. 46:523–530.

    Google Scholar 

  7. Madhok, T. C., Beyer, H. S., and Sharp, B. M. 1994. Protein kinase A regulates nicotinic cholinergic receptors and subunit messenger ribonucleic acids in PC 12 cells. Endocrinology 134:91–96.

    Google Scholar 

  8. Benowitz, N. L. 1996. Pharmacology of nicotine: Addiction and therapeutics. Annu. Rev. Pharmacol. Toxicol. 36:597–613.

    Google Scholar 

  9. Corrigall, W. A., Coen, K. M., and Adamson, K. L. 1994. Selfadministered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res. 653:278–284.

    Google Scholar 

  10. Smith, D. G., Mills, W. J., Steen, R. G., and Williams, D. 1999. Levels of high energy phosphate in the dorsal skin of the foot in normal and diabetic adults: the role of 31P magnetic resonance spectroscopy and direct quantification with high pressure liquid chromatography. Foot Ankle Int. 20:258–262.

    Google Scholar 

  11. Toth, E., Vizi, E. S., and Lajtha, A. 1993. Effect of nicotine on levels of extracellular amino acids in regions of the rat brain in vivo. Neuropharmacol. 32:827–832.

    Google Scholar 

  12. Pettegrew, J. W., Panchalingam, K., Withers, G., McKeag, D., and Strychor, S. 1990. Changes in brain energy and phospholipid metabolism during development and aging in the Fischer 344 rat. J. Neuropathol. Exp. Neurol. 49:237–249.

    Google Scholar 

  13. Meneses, P. and Glonek, T. 1988. High resolution 31P NMR of extracted phospholipids. J. Lipid Res. 29:679–690.

    Google Scholar 

  14. Klunk, W. E., Xu, C. J., Panchalingam, K., McClure, R. J., and Pettegrew, J. W. 1994. Analysis of magnetic resonance spectra by mole percent: Comparison to absolute units. Neurobiol. Aging 15:133–140.

    Google Scholar 

  15. Meneses, P., Para, P. F., and Glonek, T. 1989. 31P NMR of tissue phospholipids: A comparison of three tissue pre-treatment procedures. J. Lipid Res. 30:458–461.

    Google Scholar 

  16. Vance, J. E. 1988. Compartmentalization of phospholipids for lipoprotein assembly on the basis of molecular species and biosynthetic origin. Biochim. Biophys. Acta 963:70–81.

    Google Scholar 

  17. Vance, D. E. 1991. Phospholipid metabolism and cell signalling in eucaryotes. Pages 205–240, in Vance, D. E., and Vance, J. (eds.), Biochemistry of lipids, lipoproteins and membranes, Volume 20, Elsevier, New York.

    Google Scholar 

  18. Geddes, J. W., Panchalingam, K., Keller, J. N., and Pettegrew, J. W. 1997. Elevated phosphocholine and phosphatidyl choline following rate entorhinal cortex lesions. Neurobiol. Aging 18: 305–308.

    Google Scholar 

  19. Robinson, N. C. 1993. Functional binding of cardiolipin to cytochrome c oxidase. J. Bioenerg. Biomembr. 25:153–163.

    Google Scholar 

  20. McAuley, K. E., Fyfe, P. K., Ridge, J. P., Isaacs, N. W., Cogdell, R. J., and Jones, M. R. 1999. Structural details of an interaction between cardiolipin and an integral membrane protein. Proc. Natl. Acad. Sci. USA 96:14706–14711.

    Google Scholar 

  21. Sastry, B. V., Chance, M. B., Hemontolor, M. E., and Goddijn-Wessel, T. A. 1998. Formation and retention of cotinine during placental transfer of nicotine in human placental cotyledon. Pharmacology 57:104–116.

    Google Scholar 

  22. Sastry, B. V. and Hemontolor, M. E. 1998. Influence of nicotine and cotinine on retinal phospholipase A2 and its significance to macular function. J. Ocular Pharmacol. Therap. 14:447–458.

    Google Scholar 

  23. Agranoff, B. W. and Hajra, A. K. 1994. Lipids. Pages 97–116, in Siegel, G. J., Agranoff, B. W., Albers, R. W., and Molinoff, P. B. (eds.), Basic Neurochemistry, Molecular, Cellular, and Medical Aspects, Raven Press, New York.

    Google Scholar 

  24. Wallimann, T. and Hemmer, W. 1994. Creatine kinase in nonmuscle tissues and cells. Mol. Cell. Biochem. 133-134:193–220.

    Google Scholar 

  25. Xu, C. J., Klunk, W. E., Kanfer, J. N., Xiong, Q., Miller, G., and Pettegrew, J. W. 1996. Phosphocreatine-dependent glutamate uptake by synaptic vesicles. A comparison with ATP dependent glutamate uptake. J. Biol. Chem. 271:13435–13440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettegrew, J.W., Panchalingam, K., McClure, R.J. et al. Brain Metabolic Effects of Acute Nicotine. Neurochem Res 26, 181–185 (2001). https://doi.org/10.1023/A:1011007131195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011007131195

Navigation