Skip to main content
Log in

Growth and Properties of CaTiO3 Single Crystal Fibers

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Single crystal fibers of CaTiO3 have been grown by the Laser Heated Pedestal Growth (LHPG) method up to several cm in length with diameters of 500–700 μm. The crystals, characterized by X-ray diffraction analysis, have the distorted orthorhombic perovskite structure. Dielectric constant, dielectric loss and temperature coefficient of resonant frequency along the [101]o and [010]o (o means orthorhombic unit cell) direction of the crystal were investigated over the temperature range from −250°C to 100°C. The results of thermal expansion measurements up to 850°C reveal no unusual behavior associated with phase transitions. One of the modes of twinning reported by Bowman from optical analysis is confirmed by optical microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.S. Galasso, Structure, Properties and Preparation of Perovskite-Type Compounds (Pergamon, Oxford, 1969).

    Google Scholar 

  2. H.F. Kay and P.C. Bailey, Acta Cryst., 10, 219 (1957).

    Google Scholar 

  3. B.E. Watts, H. Dabkowska, and B.M. Wanklyn, J. Cryst. Growth., 94, 125 (1989).

    Google Scholar 

  4. Leom Merker, J. Am. Ceram. Soc., 45, 366 (1962).

    Google Scholar 

  5. S. Sasaki, C.T. Prewitt, and J.D. Bass, Acta Cryst., C43, 1668 (1987).

    Google Scholar 

  6. Xing Liu and R.C. Liebermann, Phys. Chem. Minerals., 20, 171 (1993).

    Google Scholar 

  7. P. Gillet, F. Guyor, G.D. Price, B. Tournerie, and A. Le Cleach, Phys. Chem. Minerals., 20, 159 (1993).

    Google Scholar 

  8. A. Linz, Jr. and K. Herrington, J. Chem. Phys., 28, 824 (1958).

    Google Scholar 

  9. T. Sato, R. Miyamoto, and A. Fukasawa, Jpn. J. Appl. Phys., 20 (Suppl. 20-4), 151 (1981).

    Google Scholar 

  10. Dong Hun Yeo, Jae Beom Kim, Jong Ha Moon, Seok Jin Yoon, and Hyun Jai Kim, Jpn. J. Appl. Phys. Part 1, 35(2A), 666 (1996).

    Google Scholar 

  11. Yijian Jiang, Ruyan Guo, and A.S. Bhalla, J. Phys. Chem. Solid., 59, 611 (1998).

    Google Scholar 

  12. J.S. Haggerty, W.P. Menashi, and J.F. Wenckus, Method for Forming Refractory Fibers by Laser Energy, U.S. Patent 3944640, (March) 16, 1976; Apparatus for Forming Refractory Fibers, U.S. Patent 4012213, March 15, (1977).

  13. R.S. Feigelson, MRS Bull., XIII, 47 (1988).

    Google Scholar 

  14. J.K. Yamamoto and A.S. Bhalla, Mater. Res. Bull., 24, 761 (1989).

    Google Scholar 

  15. Ruyan Guo, A.S. Bhalla, and L.E. Cross, J. Appl. Phys., 75, 4704 (1994).

    Google Scholar 

  16. A. Linz, Jr., Phys. Rev., 91, 753 (1953).

    Google Scholar 

  17. B.F. Naylor and O.A. Cook, J. Am. Chem. Soc., 68, 1003 (1946).

    Google Scholar 

  18. H.L. Bowman, Miner. Mag., 15, 156 (1908).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Guo, R. & Bhalla, A. Growth and Properties of CaTiO3 Single Crystal Fibers. Journal of Electroceramics 2, 199–203 (1998). https://doi.org/10.1023/A:1009978901009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009978901009

Navigation