Skip to main content
Log in

Local and Global Properties of the World

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

The essence of the method of physics is inseparably connected with the problem of interplay between local and global properties of the universe. In the present paper we discuss this interplay as it is present in three major departments of contemporary physics: general relativity, quantum mechanics and some attempts at quantizing gravity (especially geometrodynamics and its recent successors in the form of various pregeometry conceptions). It turns out that all big interpretative issues involved in this problem point towards the necessity of changing from the standard space-time geometry to some radically new, most probably non-local, generalization. We argue that the recent noncommutative geometry offers attractive possibilities, and gives us a conceptual insight into its algebraic foundations. Noncommutative spaces are, in general, non-local, and their applications to physics, known at present, seem very promising. One would expect that beneath the Planck threshold there reigns a "noncommutative pregeometry", and only when crossing this threshold does the usual space-time geometry emerges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbour, J. B. and Pfister, H. (1995), Mach's Principle: From Newton's Bucket to Quantum Gravity, Boston-Basel-Berlin: Birkhäuser.

    Google Scholar 

  • Barrow, J.D. and Tipler, F.J. (1986), The Cosmological Anthropic Principle, Oxford: Clarendon Press.

    Google Scholar 

  • Beem, J. K. and Ehrlich, P. E. (1981), Global Lorentzian Geometry, New York-Basel: M. Dekker.

    Google Scholar 

  • Blondel, M. (1927), La Pensée, citod by: Tresmontant, C.(1963), Introduction à la métaphysique de Maurice Blondel, 63, Paris: Éditions du Seuil, 63.

  • Bosshard, B. (1976), ‘On the b-Boundary of the Closed Friedmann Model’, Commun. Math. Phys., 46, 263–268.

    Article  Google Scholar 

  • Briemont, J. (1995), ‘Science of Chaos and Chaos in Science’, Physicalia Magazine, 17, 159.

    Google Scholar 

  • Bunge, M. and García-Maynez, A. (1977), ‘A Relational Theory of Physical Space’, Int. J. Theor. Phys., 15, 961–972.

    Article  Google Scholar 

  • Cahill, R.T. and Klinger, C.M. (1996), Pregeometric Modelling of the Space-Time Phenomenology, preprint gr qc/9605018.

  • Cartan, E. (1974), ‘Le parallélisme absolu et la théorie unitaire du champ’, in: Notices sur les travaux scientifiques, Gauthier-Villars, Paris.

    Google Scholar 

  • Carter, B. (1971), ‘Causal Structure in Space-Time’, Gen. Rel. Gravit., 1, 349–391.

    Article  Google Scholar 

  • Chamseddine, A. H. (1994), ‘Connection Between Space-Time Supersymmetry and Non Commutative Geometry’, Phys. Lett., B332, 349–357.

    Google Scholar 

  • Chamseddine, A. H. and Connes, A. (1996a), The Spectral Action Principle, preprint.

  • Chamseddine, A. H. and Connes, A. (1996b), A Universal Action Formula, preprint.

  • Chamseddine, A. H., Felder, G. and Fröhlich, J. (1992), ‘Unified Gauge Theories in Non-Commutative Geometry’, Phys. Lett., B296, 109–116.

    Google Scholar 

  • Chamscddinc, A. H., Felder, G. and Fröhlich, J. (1993a), ‘Grand Unification in Non-Commutative Geometry’, Nuclear Phys., B395, 672–698.

    Google Scholar 

  • Chamseddine, A. H., Felder, G. and Fröhlich, J. (1993b), ‘Gravity in Non-Commutative Geometry’, Commun. Math. Phys., 155, 205–217.

    Article  Google Scholar 

  • Chamseddine, A. H. and Fröhlich, J. (1994a), ‘SO(10) Unification in Noncommutative Geometry’, Phys. Rev., D50, 2893–2907.

    Google Scholar 

  • Chamseddine, A. H. and Fröhlich, J. (1994b), ‘The Chern-Simons Action in Noncommutative Geometry’, J. Math. Phys., 35, 5195–5218.

    Article  Google Scholar 

  • Choquet-Bruhat, Y. (1968), ‘Hyperbolic Partial Differential Equations on a Manifold,’ in: DeWitt, C.M, and Wheeler J.A. (eds.), Battelle Rencontres: 1967 Lectures in Mathematics and Physics, New York-Amsterdam: Benjamin 84–106.

    Google Scholar 

  • Clarke, C. J. S. (1993), The Analysis of Space-Time Singularities, Cambridge: Cambridge University Press.

    Google Scholar 

  • Clifford, W.K. (1879), Lectures and Essays, vol. 1, eds. L. Stephen and F. Pollock, London: Macmillan.

    Google Scholar 

  • Connes, A. (1995), Noncommutative Geometry, New York, London, etc.: Academic Press.

    Google Scholar 

  • Connes, A. and Lott, J. (1990), ‘Particle Models and Noncommutative Geometry’, Nuclear Phys., 18B,suppl. 29–47.

    Google Scholar 

  • Cook, R.J. (1988), ‘What are Quantum Jumps?’, Physica Scripta, 21, 49.

    Google Scholar 

  • de Broglie, L. (1956), Nouvelles perspectives en microphysique, Paris: Albin Michel.

    Google Scholar 

  • Demaret, J. and Lambert, D. (1994), Le principe anthropique, Paris: Éditions Armand Colin.

    Google Scholar 

  • DeWitt, B.S. (1967), ‘Quantum Thcory of Gravity I. The Canonical Theory’, Phys. Rev., 160, 1113–1148.

    Article  Google Scholar 

  • DeWitt, B. S. and Graham, N.G. (eds.) (1973), The Many-Worlds Interpretation of Quantum Mechanics, Princeton: Princeton University Press.

    Google Scholar 

  • Dubois-Violette, M. Some Aspects of Noncommutative Differential Geometry, preprint q-alg/9511027.

  • Dubois-Violette, M., Kerner, R. and Madore, J. (1990), ‘Noncommutative Differential Gcometry and New Models of Gauge Theory’ J. Math. Phys., 31, 323–330.

    Article  Google Scholar 

  • Dupré, M. 1978, ‘Duality for C*-algebras’, in: Mathematical Foundations of Quantum Theory, New York, London, etc.: Academic Press.

    Google Scholar 

  • Earman, J. (1995), Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes, New York-Oxford: Oxford University Press.

    Google Scholar 

  • Einstein, A. (1936), ‘Physics and Reality’, Journal of the Franklin Institute, 221, 378.

    Google Scholar 

  • Fer, F. (1977), L'irréversibilité, fondement de la stabilité du monde physique, Paris: Gauthier-Villars.

    Google Scholar 

  • Finkelstein, D. (1969), ‘Space-Time Code I’, Phys. Rev., 184, 1261–1271 and the subsequent papers of the same series in Phys. Rev. D between 1972 and 1974; cf. also Finkelstein, D. (1996), Quantum Relativity, Springer-Verlag: Berlin.

    Article  Google Scholar 

  • Fischer, A. E. and Marsden, J. E. (1979), ‘The Initial Value Problem in the Dynamical Formulation of General Relativity’, in: Hawking S.W. and Israel W. (eds.), General Relativity — An Einstein Centenary Survey, Cambridge-London, etc: Cambridge University Press.

    Google Scholar 

  • García Sucre, M. (1985), ‘Quantum Statistics in a Simple Model of Space-Time’, Int. J. Theor. Phys., 24, 441–445.

    Article  Google Scholar 

  • Geroch, R. (1972), ‘Einstein Algebras’, Commun. Math. Phys., 26, 271–275.

    Article  Google Scholar 

  • Geroch, R., Liang Can-bi and Wald, R. M. (1982), ‘Singular Boundaries of Space-Times’, J. Math. Phys., 23, 432–435.

    Article  Google Scholar 

  • Gibbs, P. (1995), The Small Scale Structure of Space-Time: A Bibliographical Review, preprint hep-th/9506171.

  • Gotay, M.J. and Demaret, J. (1983), ‘Quantum Cosmological Singularities’, Phys. Rev. D, 28, 2402–2413.

    Article  Google Scholar 

  • Grégoire, G. (1969), Les grands problèmes métaphysiques, Paris: Presses Universitaires de France.

    Google Scholar 

  • Gruszczak, J., M. Heller, and Multarzyński, P. (1988), ‘A generalization of Manifolds as space-Time Models’, J; Math. Phys., 29, 2576–2580.

    Article  Google Scholar 

  • Gruszczak, J. and Heller, M. (1993), ‘Differential Structure of Space-Time and Its Prolongations to Singular Boundaries’, Intern. J. Theor. Phys., 32, 625–648.

    Article  Google Scholar 

  • Hartle, J. B. and Hawking, S.W. (1983), ‘Wave Function of the Universe’, Phys. Rev. D, 28, 2960–2975.

    Article  Google Scholar 

  • Hasslacher, B. and Perry, M.J. (1981), ‘Spin Networks Are Simplicial Quantum Gravity’, Phys. Lett., 103B, 21–24.

    Google Scholar 

  • Hawking, S. W. and Ellis, G. F. R. (1973), The Large Scale Structure of Space-Time, Cambridge: Cambridge University Press.

    Google Scholar 

  • Hawking, S. and Pcnrose, R. (1966), The Nature of Space-Time, Princeton: Princeton University Press.

    Google Scholar 

  • Hawkins, E. (1996), Hamiltonian Gravity and Noncommutative Geometry, preprint, gr-qc/9605068.

  • Heisenberg, W. (1930), ‘Die Selbstenergie des Elektrons’, Zeitschrift für Physik, 65, 4–13.

    Article  Google Scholar 

  • Heller, M. (1992), ‘Einstein Algebras and General Relativity’, Int. J. Theor. Phys., 31, 277–288.

    Article  Google Scholar 

  • Heller, M. and Sasin, W. (1995a), ‘Structured Spaces and Their Applications to Relativistic Physics’, J. Math. Phys., 36, 3644–3662.

    Article  Google Scholar 

  • Heller, M. and Sasin, W. (1995b), ‘Sheaves of Einstein Algebras’, Int. J. Theor. Phys., 34, 387–398.

    Article  Google Scholar 

  • Heller, M. and Sasin, W. (1996a), ‘Noncommutative Structure of Singularities in General Relativity’, J. Math. Phys., 37, 5665–5671.

    Article  Google Scholar 

  • Heller, M. and Sasin, W. (1996b), ‘The Closed Friedman World Model with the Initial and Final Singularities as a Non-Commutative Space’, Banach Center Publications, in press.

  • Jammer, M. (1974) The Philosophy of Quantum Mechanics. The Interpretations of Quantum Mechanics in Historical Perspective, New York: Wiley.

    Google Scholar 

  • Johnson, R. A. (1977), ‘The Boundle Boundary in Some Special Cases’, J. Math. Phys., 18, 898–902.

    Article  Google Scholar 

  • Joshi, P. S. (1993), Global Aspects in Gravitation and Cosmology, Oxford: Clarendon Press.

    Google Scholar 

  • Joos, E. (1996), ‘Decoherence Trough Interaction with the Environment’, in: Decoherence and the Appearance of a Classical World in Quantum Theory, Berlin: Springer, 35–136.

    Google Scholar 

  • Kac, M. (1959), Probability and Related Topics in the Physical Sciences, New York: Interscience Pub.

    Google Scholar 

  • Kalau, W. (1996), Hamilton Formalism in Non-Commutative Geometry, preprint.

  • Kolb, E. W. and Turner, M. S. (1990), The Early Universe, Redwood City-Menlo Park, etc.: Addison-Wesley.

    Google Scholar 

  • LaFave, N.J. (1993), ‘A Step Toward Pregcometry I: Ponzano-Reggc Spin Networks and the Origin of Space-Time Structure in Four Dimensions’, preprint gr-qc/9310036.

  • Leibniz, G., The Monadology, in: Philosophical Writings, ed. G.H.R. Parkinson (1973), London: Dent.

    Google Scholar 

  • Lerner, D. (1972), ‘Techniques of Topology and Differential Geometry in General Relativity’, in: Farnnsworth, D., Frank J., Porter J. and Thompson A. (eds.), Methods of Local and Global Differential Geometry in General Relativity, Berlin-Heidelberg-New York: Springer-Verlag.

    Google Scholar 

  • Lorente, M. (1994), ‘Quantum Processes and the Foundation of Relational Theories of Space and Time’, in: Diaz Alonso J. and Lorente Paramo M. (eds.), Relativity in General, Proceedings of the Relativity Meeting '93, Salas, September 7–10, 1993, Gif sur Yvette: Éditions Frontières, 297–302.

    Google Scholar 

  • Lorente, M. (1995), ‘A Realistic Interpretation of Lattice Gauge Theories’, in: Ferrero, M. and van der Merwe, A. (eds.), Fundamental Problems in Quantum Physics, Dordrecht: Kluwer Academic Publishers, 177–186.

    Google Scholar 

  • Mach, E. (1960), The Science of Mechanics: A Critical and Historical Account of Its Development, LaSalle: Open Court.

    Google Scholar 

  • Madore, J. (1995), An Introduction to Noncommutative Differential Geometry and Its Physical Applications, Cambridge: Cambridge University Press.

    Google Scholar 

  • Masson, T. (1996), Géometrie non commutative et applications à la theorie des champs, Thèse, Preprint, The Erwin Schrödinger International Institute for Mathematical Physics.

  • Misner, C.W. (1969), ‘Quantum Cosmology I’, Phys. Rev., 186, 1319–1327.

    Article  Google Scholar 

  • Misner, C. W., Thorne, K. S. and Wheeler, J. A. (1973), Gravitation, San Francisco: W.II. Freeman and Company.

    Google Scholar 

  • Misra, B. and Sudarshan, E.C.G. (1977), ‘The Zeno Paradox in Quantum Mechanics’, Journal of Mathematical Physics, 18, 756.

    Article  Google Scholar 

  • Nelson, E. (1985), Quantum Fluctuations, Princeton: Princeton University Press.

    Google Scholar 

  • Omnès, R. (1994), The Interpretation of Quantum Mechanics, Princeton Princeton: University Press.

    Google Scholar 

  • Partridge, R. B. (1955), 3K: The Cosmic Microwave Background Radiation, Cambridge: Cambridge University Press.

    Google Scholar 

  • Patton, C.M. and Wheeler, J.A. (1975), ‘Is Physics Legislated by Cosmogony?’ in: Isham, C.J, Penrose, R. and Sciama, D.W (eds.), Quantum Gravity, Oxford: Clarendon Press, 538–605.

    Google Scholar 

  • Penrose, R. (1971), ‘Angular Momentum: an Approach to Combinatorial Space-Time,’ in: Bastin T. (ed.), Quantum Theory and Beyond, Cambridge: Cambridge University Press, 151–180.

    Google Scholar 

  • Ponzano, G. and Regge, T. (1968), ‘Semiclassical Limit of Racah Coefficients,’ in: Bloch F. (ed.), Spectroscopy and Group Theoretical Methods in Physics, Amsterdam: North Holland, 1–58.

    Google Scholar 

  • Prigogine, I. (1980), From Being to Becoming, New York: Freeman.

    Google Scholar 

  • Prigogine, I. (1995a), ‘Why Irreversibility? The Formulation of Classical and Quantum Mechanics for Nonintegrable Systems’, Int. J. Quantum Chemistry, 53, 105.

    Article  Google Scholar 

  • Prigogine, I. (1995b), ‘Science of Chaos or Chaos in Science — A Rearguard Battle,’ Physicalia Magazine, 17, 213.

    Google Scholar 

  • Prigogine, I. and Elskens, Y. (1985), ‘Irreversibility, Stochasticity and Non-Locality in Classical Dynamics’, communicated by Y. Elskens.

  • Prigogine, I. and Stengers, I. (1984), Order out of Chaos, London: Heinemann.

    Google Scholar 

  • Rindler, W. (1977), Essential Relativity, New York-Heidelberg-Berlin: Springer.

    Google Scholar 

  • Roos, M. (1994), Introduction to Cosmology, Chichester-New York, etc.: John Wiley.

    Google Scholar 

  • Sakharov, A.D. (1967), ‘Vacuum Quantum Fluctuations in Curved Space and the Theory of Gravitation’, Doklady Akad. Nauk S.S.S.R., 177, 70–71. English translation in: Sov. Phys. Doklady, 12, 1040–1041 (1968).

    Google Scholar 

  • Sasin, W. and Heller, M. (1995), ‘Non-Commutative Differential Geometry’, Acta Cosmol., 21,no 2, 235–245.

    Google Scholar 

  • Schmidt, B. G. (1971), ‘A New Definition of Singular Points in General Relativity,’ Gen. Rel. Grav., 1, 269–280.

    Article  Google Scholar 

  • Snyder, H.S. (1947), ‘Quantized Space-Time’, Phys. Rev., 71, 38–41.

    Article  Google Scholar 

  • Stephani, H. (1982), General Relativity — An Introduction to the Theory of the Gravitational Field, Cambridge-London-New York, etc.: Cambridge University Press.

    Google Scholar 

  • Tipler, F., Clarke, C. J. S. and Ellis, G. F. R. (1980), ‘Singularities and Horizons’, in: Held A. (ed.), General Relativity and Gravitation, vol. 2, New York: Plenum, 97–206.

    Google Scholar 

  • Tonnelat, M-A. (1965), Les théories unitaires de l'électromagnétisme et de la gravitation, Paris: Gauthier-Villars.

    Google Scholar 

  • Vilcnkin, A. (1988), ‘Quantum Cosmology and the Issue of the Initial State of the Universe’, Phys. Rev., 37, 888–897.

    Article  Google Scholar 

  • von Weizsäcker, C.F. (1986), ‘Reconstruction of Quantum Mechanics’, in: Castell L. and von Weizsäcker C.F. (eds.), Quantum Theory and the Structure of Space and Time, Munich: Hanser.

    Google Scholar 

  • Wheeler, J. A. (1962), Geometrodynamics, New York: Academic Press.

    Google Scholar 

  • Wheeler, J.A. (1964), ‘Geometrodynamics and the Issue of the Final State’, in: DeWitt C. and Dewitt B.S. (eds.), Relativity, Groups and Topology, New York: Gordon and Breach, 315–320.

    Google Scholar 

  • Wheeler, J.A. (1968), ‘Superspace and the Nature of Quantum Geometrodynamics’, in: DeWitt, C.M, and Wheeler J.A. (eds.), Battelle Rencontres: 1967 Lectures in Mathematics and Physics, New York-Amsterdam: Benjamin, 242–307.

    Google Scholar 

  • Wheeler, J.A. (1977), ‘Genesis and Observership’, in: Butts R. and Hintikka J. (eds.), Foundational Problems in Special Sciences, Dordrecht: Reidel, 1–33.

    Google Scholar 

  • Wheeler, J.A. (1979), ‘Frontiers of Time’, in: Toraldo di Francia N. (ed.), Problems in the Foundations of Physics, Proceedings of the International School of Physics “Enrico Fermi” (Course 72), Amsterdam: North-Holland, 395–497.

    Google Scholar 

  • Wheeler, J.A. (1980), ‘Pregeometry: Motivations and Prospects’, in: Marlow A.R. (ed.), Quantum Theory and Gravitation, New York: Academic Press, 1–11.

    Google Scholar 

  • Wheeler, J.A. (1990), ‘Information, Physics, Quantum, the Search for Links’, in: Zurek, W.H. (ed.), Complexity, Entropy and the Physics of Information, Addison-Wesley: Reading. See also: J. A. Wheeler (1994), ‘It from Bit’, in: At Home in the Universe, Woodbury: The American Institute of Physics. 295–311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demaret, J., Heller, M. & Lambert, D. Local and Global Properties of the World. Foundations of Science 2, 137–176 (1997). https://doi.org/10.1023/A:1009691614005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009691614005

Navigation