Skip to main content
Log in

A Branch and Bound Method via d.c. Optimization Algorithms and Ellipsoidal Technique for Box Constrained Nonconvex Quadratic Problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we propose a new branch and bound algorithm using a rectangular partition and ellipsoidal technique for minimizing a nonconvex quadratic function with box constraints. The bounding procedures are investigated by d.c. (difference of convex functions) optimization algorithms, called DCA. This is based upon the fact that the application of the DCA to the problems of minimizing a quadratic form over an ellipsoid and/or over a box is efficient. Some details of computational aspects of the algorithm are reported. Finally, numerical experiments on a lot of test problems showing the efficiency of our algorithm are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Le Thi Hoai An and Pham Dinh Tao (1997), Solving a class of linearly constrained indefinite quadratic problems by d. c. algorithms, Journal of Global Optimization 11: 253–285.

    Google Scholar 

  2. Le Thi Hoai An, Pham Dinh Tao and Le Dung Muu (1996), Numerical solution for optimization over the efficient set by d. c. optimization algorithm, Operations Research Letters 19: 117–128.

    Google Scholar 

  3. F. Barahona, M. Junger and R. G. Reinelt (1989), Experiments in quadratic 0–1 programming, Mathematical Programming 44: 127–137.

    Google Scholar 

  4. H. P. Benson (1990), Separable concave minimization via partial outer approximation and branch and bound, Operations Research Letters 9: 389–394.

    Google Scholar 

  5. I. Bieche, R. Maynard, R. Rammal and J. P. Uhry (1980), On the ground states of the frustration model of a spin glass by a matching method of graph theory, J. Phys. A: Math. Gen. 13: 2553–2576.

    Google Scholar 

  6. I. M. Bomze and G. Danninger (1993), A global optimization algorithm for concave quadratic problems, SIAM Journal on Optimization 3(4): 826–842.

    Google Scholar 

  7. I. M. Bomze and G. Danninger (1994), A finite algorithm for solving general quadratic problems, Journal of Global Optimization 4: 1–16.

    Google Scholar 

  8. T. F. Coleman and L. A. Hulbert (1989), A direct active set algorithm for large sparse quadratic programs with simple bounds, Mathematical Programming 45: 373–406.

    Google Scholar 

  9. R. S. Dembo and U. Tulowitzki (1984), On the minimization of quadratic functions subject to box constraints, SIAM J. Sci. Comp.

  10. R. Fletcher (1991), Practical Methods of Optimization, 2nd edn., Wiley-Interscience.

  11. C. A. Floudas and V. Visweswaran (1994), Quadratic optimization, in: Handbook of Global Optimization (pp. 217–269), edited by R. Horst and P. M. Pardalos, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  12. G. E. Forsythe and G. H. Golub (1965), On the stationary values of a second-degree polynomial on the unit sphere, J. Soc. Indust. Appl. Math. 13(4).

  13. D. M. Gay (1981), Computing optimal locally constrained steps, SIAM J. Sci. Stat. Comput. 2: 186–197.

    Google Scholar 

  14. M. Grotschel, L. Laszlo and A. Schrijver (1993), Geometric Algorithms and Combinatorial Optimization, 2nd rev. edn., Springer Verlag, Berlin.

    Google Scholar 

  15. C. G. Han, P. M. Pardalos and Y. Ye (1990), Computational aspects of an interior point algorithm for quadratic programming problems with box constraints, in: Large-Scale Numerical Optimization, SIAM.

  16. P. Hansen, B. Jaumard, M. Ruiz and J. Xiong (1991), Global minimization of indefinite quadratic functions subject to box constraints, Technical Report G–91-54, GERAD, École Polytechnique, Université McGill, Montréal, Canada.

    Google Scholar 

  17. R. Horst and P. T. Thach (1992), A decomposition method for quadratic minimization problems with integer variables, in P. M. Pardalos (ed.), Advances in Optimization and Parallel Computing (pp. 143–163), Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  18. R. Horst and N. V. Thoai (1996), A new algorithm for solving the general quadratic programming problem, Computational Optimization and Applications 5: 39–48.

    Google Scholar 

  19. R. Horst and H. Tuy (1993), Global Optimization: Deterministic Approaches, 2nd rev. edn., Springer Verlag, Berlin.

    Google Scholar 

  20. B. Kalantari and J. B. Rosen (1987), Algorithm for global minimization of linearly constrained concave quadratic functions, Mathematics of Operations Research 12: 544–561.

    Google Scholar 

  21. A. Kamath and N. Karmarkar (1992), A continuous method for computing bounds in integer quadratic optimization problems, Journal of Global Optimization, 1992: 229–241.

  22. N. Karmarkar, K. G. Ramakrishnan and G. C. Mauricio (1991), An interior point algorithm to solve computationally difficult set covering problems, Mathematical Programming 52(2): 597–618.

    Google Scholar 

  23. A. Kamath, N. Karmarkar, K. G. Ramakrishnan and G. C. Mauricio (1992), A continuous approach to inductive inference, Mathematical Programming 57B(2): 215–238.

    Google Scholar 

  24. S. Kaufman (1993), The origins of Order: Sell-Organization and Selection in Evolution, Oxford University Press.

  25. K. Levenberg (1963), A method for the solution of certain non-linear problems in least squares, Quarterly Appl. Math. 2: 164–168.

    Google Scholar 

  26. S. Lucidi, L. Palagi and M. Roma (1998), On some properties of quadratic programs with a convex quadratic constraint, SIAM Journal on Optimization 8(1).

  27. J. Martinez (1994), Local minimizers of quadratic functions on Euclidean balls and spheres, SIAM Journal on Optimization 4(1): 159–176.

    Google Scholar 

  28. D. W. Marquardt (1963), An algorithm for least-squares estimation of nonlinear parameters, J. SIAM 11: 431–441.

    Google Scholar 

  29. J. J. Moré and D. C. Sorensen (1983), Computing a trust region step, SIAM J. Sci. Stat. Comput. 4: 553–572.

    Google Scholar 

  30. P. M. Pardalos and G. Rodgers (1990), Computational aspects of a branch and bound algorithm for quadratic zero-one programming, Computing 45: 131–144.

    Google Scholar 

  31. P. M. Pardalos and G. Rodgers (1990), Parallel branch and bound algorithms for unconstrained quadratic zero-one programming, in: Impacts of Recent Computer Advances on Operations Research (pp. 131–143) edited by R. Sharda et al., North-Holland, Amsterdam.

    Google Scholar 

  32. P. M. Pardalos, J. H. Glick and J. B. Rosen (1987), Global minimization of indefinite quadratic problems, Computing 39: 281–291.

    Google Scholar 

  33. Pham Dinh Tao and E. B. Souad (1988), Duality in d. c. (difference of convex functions) optimization: Subgradient methods, Trends in Mathematical Optimization, International Series of Numer. Math. 84 (Birkhauser): 276–294.

    Google Scholar 

  34. Phan Dinh Tao (1989), Méthodes numériques pour la minimisation globale d'une forme quadratique (convexe ou non convexe) sur une boule et une sphère euclidiennes, Rapport de Recherche, Université Joseph-Fourier, Grenoble.

    Google Scholar 

  35. Phan Dinh Tao and S. Wang (1990), Training multi-layered neural network with a Trust region based algorithm, Math. Modell. Numer. Anal. 24(4): 523–553.

    Google Scholar 

  36. Pham Dinh Tao and Le Thi Hoai An (1995), Lagrangian stability and global optimality on nonconvex quadratic minimization over Euclidiean balls and spheres, Journal of Convex Analysis 2: 263–276.

    Google Scholar 

  37. Pham Dinh Tao and Le Thi Hoai An (1998), D. c. optimization algorithm for solving the trust region sub-problem, SIAM Journal on Optimization 8(2): 1–30.

    Google Scholar 

  38. A. T. Phillips and J. B. Rosen (1988), A parallel algorithm for constrained concave quadratic global minimization, Mathematical Programming 42: 412–448.

    Google Scholar 

  39. A. T. Phillips and J. B. Rosen (1990), A parallel algorithm for partially separable non-convex global minimization: Linear constraints, Annals of Operations Research 25: 101–118.

    Google Scholar 

  40. S. Poljak, R. Rendl and H. Wolkowicz (1995), A recipe for semidefinite relaxation for (0, 1)-quadratic programming, Journal of Global Optimization 7: 51–73.

    Google Scholar 

  41. Thai Quynh Phong, Le Thi Hoai An and Pham Dinh Tao (1996), On the global solution of linearly constrained indefinite quadratic minimization problems by decomposition branch and bound method. RAIRO, Recherche Opérationnelle 30(1): 31–49.

    Google Scholar 

  42. N. V. Thoai (1994), A decomposition method in nonconvex mixed-integer programming, Forschungsbericht Nr. 94–10.

  43. J. F. Toland (1979), On subdifferential calculus and duality in nonconvex optimization, Bull. Soc. Math. France, Mémoire 60: 177–183.

    Google Scholar 

  44. H. Tuy (1992), On nonconvex optimization problems with separated nonconvex variables, Journal of Global Optimization 1(3): 229–244.

    Google Scholar 

  45. F. Rendl and H. Wolkowicz (1994), A semidefinite framework to trust region subproblems with application to large scale minimization, CORR Report 94–32, Department of Combinatorics and Optimization, University of Waterloo.

  46. J. B. Rosen and P. M. Pardalos (1986), Global minimization of large scale constrained quadratic problem by separable programming. Mathematical Programming 34(2): 163–174.

    Google Scholar 

  47. S. A. Santos and D. C. Sorensen, A New Matrix-Free Algorithmfor the Large-Scale Trust-region Sub-problem, SIAM Journal on Optimization (in prep.).

  48. D. C. Sorensen (1982), Newton's method with a model trust region modification, SIAM J. Numer. Anal. 19(2): 409–426.

    Google Scholar 

  49. D. C. Sorensen (1992), Implicit application of Polynomial Filters in a K-step Arnoldi Method, SIAM Journal on Matrix Analysis and Applications 13: 357–385.

    Google Scholar 

  50. D. C. Sorensen (1997), Minimization of a large scale quadratic function subject to a spherical constraint, SIAM Journal on Opimization 7(1): 141–161.

    Google Scholar 

  51. S. A. Vavasis and R. Zippel (1990), Proving polynomial time for sphere-constrained quadratic programming, Technical Report 90–1182, Department of Computer Science, Cornell University, Ithaca, NY.

    Google Scholar 

  52. S. A. Vavasis (1991), Nonlinear Optimization: Complexity Issues, Oxford University Press.

  53. S. A. Vavasis (1992), Approximation algorithms for indefinite quadratic programming, Mathematical Programming 57: 279–311.

    Google Scholar 

  54. Y. Ye (1992), On affine scaling algorithms for nonconvex quadratic programming, Mathematical Programming 56: 285–300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, L.T.H., Tao, P.D. A Branch and Bound Method via d.c. Optimization Algorithms and Ellipsoidal Technique for Box Constrained Nonconvex Quadratic Problems. Journal of Global Optimization 13, 171–206 (1998). https://doi.org/10.1023/A:1008240227198

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008240227198

Navigation