Skip to main content
Log in

Induction of mRNAs in response to acclimation of trout cells to different osmolalities

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The direct effect of osmolality on growth and mRNA population were investigated in the rainbow trout cell line (RTG-2). These cells can grow in the media of osmolalities ranging from 200 to 600 mosmol kg-1. With two-dimensional electrophoresis, the in vitro translation of poly(A+) RNA isolated from these cells showed osmoresponsive changes in the population of translatable mRNAs. Using differential mRNA display polymerase chain reaction, however, we identified inducible cDNA products in hyper-osmotic and hypo-osmotic media as third component of complement, and as homologues of known genes: an atypical protein kinase regulated by the thyrotropin-dependent mitogenic pathway, nucleolin and CHD3. The remaining cDNAs have no significant homology in GenBank. Northern blots demonstrate that their mRNA levels were induced in hyper-osmotic and hypo-osmotic media, but not by other stresses. The expressed proteins of these mRNAs may be involved directly or indirectly in the adaptation of RTG-2 cells to different osmolalities probably through the osmotic signal transduction and adjustment in cellular metabolism to osmotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Airaksinen, S., Rabergh C.M., Sistonen, L. and Nikinmaa, M. 1998. Effects of heat shock and hypoxia on protein synthesis in rainbow trout (Oncorhynchus mykiss) cells. J. Exp. Biol. 201: 2543-2551.

    Google Scholar 

  • Alexis, M.N., Papaparaskeva-Papoutsoglou, E. and Papoutsoglou, S. 1984. Influence of acclimation temperature on the osmotic regulation and survival of rainbow trout (Salmo gairdneri) rapidly transferred from fresh water to sea water. Aquaculture 40: 333-341.

    Google Scholar 

  • Burg, M.B., Kwon, E.D. and Kültz, D. 1997. Regulation of gene expression by hypertonicity. Ann. Rev. Physiol. 59: 437-455.

    Google Scholar 

  • Finstad, B., Staurnes, M. and Reite, O.B. 1988. Effect of low temperature on sea-water tolerance in rainbow trout, Salmo gairdneri. Aquaculture 72: 319-328.

    Google Scholar 

  • Hirano, T., Morisawa, M. and Suzuki, K. 1978. Changes in plasma and coelomic fluid composition of the mature salmon (Onchorhynchus keta) during freshwater adaptation. Comp. Biochem. Physiol. 61A: 5-8.

    Google Scholar 

  • Jordan, P., Heid, H. Kinzel, V. and Kübler, D. 1994. Major cell surface-located protein substrates of ecto-protein kinase are homologs of known nuclear proteins. Biochemistry 33: 14696-14706.

    Google Scholar 

  • Kondo, K., Kowalski, L.R. and Inouye, M. 1992. Cold shock induction of yeast NSR1 protein and its role in pre-rRNA processing. J. Biol. Chem. 267: 16259-16265.

    Google Scholar 

  • Kültz, D. and Somero, G.N. 1996. Differences in protein patterns of gill epithelial cells of the fish Gillichthys mirabilisafter osmotic and thermal acclimation. J. Comp. Physiol. B 166: 88-100.

    Google Scholar 

  • Lambris, J.D., Lao, Z., Pang, J. and Alsenz, J. 1993. Third component of trout complement. cDNA cloning and conservation of functional sites. J. Immunol. 151: 6123-6134.

    Google Scholar 

  • Lang, F., Busch, G.L., Ritter, M., Vökl, H., Waldegger, S., Gulbins, E. and Dieter, H. 1998. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78: 247-306.

    Google Scholar 

  • Liang, P. and Pardee, A.B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967-971.

    Google Scholar 

  • Madsen, S.S., Jensen, M.K. Nohr, J. and Kristiansen, K. 1995. Expression of Na+,K+-ATPase in brown trout, Salmo trutta: in vivomodulation by hormones and seawater. Am. J. Physiol. 269 (Regulatory Integrative Comp. Physiol 38): R1339-R13645.

    Google Scholar 

  • Maridor, G. and Nigg, E.A. 1990. cDNA sequences of chicken nucleolin/C23 and NO38/B23, two major nucleolar proteins. Nucleic Acids Res. 18: 1286.

    Google Scholar 

  • Marc, A.M., Quentel, C. Severe, A. LeBail, P.Y. and Boeuf, G. 1995. Changes in some endocrinological and non-specific immunological parameters during seawater exposure in the brown trout. J. Fish Biol. 46: 1065-1081.

    Google Scholar 

  • Marshall, W.S., Emberley, T.R., Singer, T.D., Bryson, S.E. and Mccormick, S.D. 1999. Time course of salinity adaptation in a strongly euryhaline estuarine teleost, fundulus heteroclitus: a multivariable approach. J. Exp. Biol. 202: 1535-1544.

    Google Scholar 

  • Meyuhas, O., Baldin, V. Bouche, G. and Amalric, F. 1990. Glucorticoids repress ribosome biosynthesis in lymphosarcoma cells by affecting gene expression at the level of transcription, post transcription and translation. Biochem. Biophys. Acta. 1049: 38-44.

    Google Scholar 

  • Morimoto, R.I. and Santoro, M.G. 1998. Stress-inducible responses and heat shock proteins: new pharmacological targets for cytoprotection. Nat. Biotechnol. 16: 833-838.

    Google Scholar 

  • Morisawa, M, Hirano, T. and Suzuki, K. 1979. Changes in blood and seminal plasma composition of the mature salmon (Onchorhynchus keta) during freshwater adaptation. Comp. Biochem. Physiol. 64B: 325-329.

    Google Scholar 

  • Mosser, D.D. and Bols, N.C. 1988. Relationship between heatshock protein synthesis and thermotolerance in rainbow trout fibroblasts. J. Comp. Physiol. B 158: 457-467.

    Google Scholar 

  • Mosser, D.D., Heikkila, J.J. and Bols, N.C. 1986. Temperature ranges over which rainbow trout fibroblasts survive and synthesize heat-shock proteins. J. Cell. Physiol. 128: 432-440.

    Google Scholar 

  • Mosser, D.D., Van Oostrom, J. and Bols, N.C. Induction and decay of thermo-tolerance in rainbow trout fibroblasts. J. Cell. Physiol. 132: 155-160.

  • O'Farrell, P.H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007-4021.

    Google Scholar 

  • Oguri, M. and Ooshima, Y. 1977. Early changes in the plasma osmolality and ionic concentrations of rainbow trout and goldfish following direct transfer from fresh-water to seawater. Bull. Jap. Soc. Sci. Fish. 43: 1253-1257.

    Google Scholar 

  • Rankin, M.L., Heine, M.A., Xiao, S., LeBlanc, M.D., Nelson, J.W. and DiMario, P.J. 1993. A complete nucleolin cDNA sequence from Xenopus laevis. Nucleic Acids Res. 21: 169.

    Google Scholar 

  • Ron, B., Shimoda, S.K., Iwama, G.K. and Grau, E.G. 1995. Relationship among ration, salinity, 17α-methyltestosterone and growth in the euryhaline tilapia, Oreochromis mossambicus. Aquaculture 135: 185-193.

    Google Scholar 

  • Sahu, A., Sunyer, J.O., Moore, W.T., Sarrias, M.R., Soulika, A.M. and Lambris, J.D. 1998. Structure, functions, and evolution of the third complement component and viral molecular mimicry. Immunol. Res. 17: 109-121.

    Google Scholar 

  • Sheikh-Hamad, D., Ferraris, J.D., Dragolovich, H. G., Preuss, J., Burg, M. B. and García-Pérez, A. 1996. CD9 antigen mRNA is induced by hypertonicity in two renal epithelial cell lines. Am. J. Physiol. 270 (Cell Physiol. 39): C253-C258.

    Google Scholar 

  • Silvotti, L., Petronini, P.G., Mazzini, A., Piedimonte, G. and Borghetti, A.F. 1991. Differential adaptive response to hyperosmolarity of 3T3 and transformed SV3T3 cells. Exp. Cell. Res. 193: 253-261.

    Google Scholar 

  • Storey, K.B. 1997. Organic solutes in freezing tolerance. Comp. Biochem. Physiol. 117A: 319-326.

    Google Scholar 

  • Tocher, D.R., Castell, J.D., Dick, J.R. and Sargent, J.R. 1994. Effects of salinity on the growth and lipid composition of Atlantic salmon (Salmo salar) and turbot (Scophthalmus maximus) cells in culture. Fish Physiol. Biochem. 13: 451-461.

    Google Scholar 

  • Vijayan, M.M., Morgan, J.D. Sakamoto, T., Grau, E.G., and Iwama, G.K. 1996 Food-deprivation affects seawater acclimation in tilapia: hormonal and metabolic changes. J. Exp. Biol. 199: 2467-2475.

    Google Scholar 

  • Welsh J., Chada, K., Dalal, S.S., Cheng, R., Ralph,D. and McClelland, M. 1992. Arbitrary primed PCR fingerprinting of RNA. Nucleic Acids Res. 20: 4965-4970.

    Google Scholar 

  • Wertheimer, A.C. 1984. Maturation success of pink salmon (Onchorhynchus gorbuscha) and coho salmon (O. kisutch) held under three salinity regimes. Aquaculture 43: 195-212.

    Google Scholar 

  • Wilkin, F., Savonet, V., Radulescu, A., Petermans, J., Dumont, J.E. and Maenhaut, C. 1996. Identification and characterization of novel genes modulated in the thyroid of dogs treated with methimazole and propylthiouracil. J. Biol. Chem. 271: 28451-28457.

    Google Scholar 

  • Wolf, K. and Quimby, M.C. 1962. Established eurythermic line of fish cells in vitro. Science 135: 1065-1066.

    Google Scholar 

  • Wood, C. M. and T. J. Shuttleworth. 1995. Cellular and Molecular Approaches to Fish Ionic Regulation. Academic Press, San Diego.

    Google Scholar 

  • Woodage, T., Basrai, M.A., Baxevanis, A.D., Hieter, P. and Collins, F.S. 1997. Characterization of the CHD family of proteins. Proc. Natl. Acad. Sci. USA 94: 11472-11477.

    Google Scholar 

  • Yamashita, M., Ojima, N. and Sakamoto, T. 1996. Induction of proteins in response to cold acclimation of rainbow trout cells. FEBS Lett. 382: 261-264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamoto, T., Ojima, N. & Yamashita, M. Induction of mRNAs in response to acclimation of trout cells to different osmolalities. Fish Physiology and Biochemistry 22, 255–262 (2000). https://doi.org/10.1023/A:1007843508043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007843508043

Navigation