Skip to main content
Log in

Avoidance Responses to Infrasound in Downstream Migrating European Silver Eels, Anguilla anguilla

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

In an attempt to develop an efficient acoustic fish fence, we have designed an infrasound source able to generate large nearfield particle acceleration. The source generates water movements by means of two symmetrical pistons in an air-filled cylinder with 21 cm bore. The pistons are driven by eccentric coupling to an electric motor, with 5 cm p.p. amplitude. The piston movements are 180° out of phase. The piston reaction forces are thus opposed, leading to vibration free operation. The submergible infrasound source is operated freely suspended in the water mass. The emitted sound frequency is 11.8 Hz. The particle acceleration is about 0.01 m s−2 at a distance of 3 m, corresponding to the threshold intensity for deterring effects of infrasound on Atlantic salmon smolts. The sound source was employed to test the effect of intense infrasound on migrating European silver eels. Fish confined in a tank displayed startle behaviour and prolonged stress reactions, telemetrically monitored as tachycardia, in response to intense infrasound. The field tests were carried out in the River Imsa. A trap that catches all the descending eels is installed near the river mouth. The trap was separated in four equal sections. During the periods with infrasound exposure, the proportion of silver eels entering the section closest to the sound source was reduced to 43% of the control value. In the section closest to the opposite river bank, infrasound increased the proportion of trapped eels to 144% of the control values. This shift of the migrating eels away from the infrasound source was highly significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Astrup, J. & B. Møhl. 1993. Detection of ultrasound by the cod Gadus morhua. J. exp. Biol. 182: 71-80.

    Google Scholar 

  • Chapman, C.J. & O. Sand. 1974. Field studies of hearing in two species of flatfish Pleuronectes platessa (L.) 336 and Limanda limanda (L.) (family Pleuronectidae). Comp. Biochem. Physiol. 47A: 371-385.

    Google Scholar 

  • de Vries, H.L. 1950. The mechanics of labyrinth otoliths. Acta Oto-Laryngol. 38: 262-273.

    Google Scholar 

  • Dunning, D.J., Q.E. Ross, P. Geoghegan, J. Reichle, J.K. Menezes & J.K. Watson. 1992. Alewives avoid high-frequency sound. N. Amer. J. Fish. Manage. 12: 407-416.

    Google Scholar 

  • Enger, P.S., A. Kalmijn & O. Sand. 1989. Behavioral investigations on the functions of the lateral line and inner ear in predation. pp. 575-587. In: S. Coombs, P. Görner & M. Münz (ed.) The Mechanosensory Lateral Line: Neurobiology and Evolution, Springer-Verlag, Berlin.

    Google Scholar 

  • Hadderingh, R.H., F.B.J. Koops & J.W. van der Stoep. 1988. Research on fish protection at Dutch thermal and hydropower stations. Kema Sci.Techn.Rep. 6: 57-68.

    Google Scholar 

  • Harris, G.G. 1964. Considerations on the physics of sound production by fishes. pp. 233-247. In: W.N. Tavolga (ed.) Marine Bio-Acoustics, Pergamon Press, London.

    Google Scholar 

  • Hawkins, A.D. 1981. The hearing abilities of fish. pp. 109-133. In: W.N. Tavolga, A.N. Popper & R.R. Fay (ed.) Hearing and Sound Communication in Fishes, Springer-Verlag, New York.

    Google Scholar 

  • Jerkø, H., I. Turunen-Rise, P.S. Enger & O. Sand. 1989. Hearing in the eel (Anguilla anguilla). J. comp. Physiol. 165A: 455-459.

    Google Scholar 

  • Kalmijn, A.J. 1988. Hydrodynamic and acoustic field detection. pp. 83-130. In: J. Atema, R.R. Fay, A.N. Popper & W.N. Tavolga (ed.) Sensory Biology of Aquatic Animals, Springer Verlag, New York.

    Google Scholar 

  • Kanwisher, J., K. Lawson & G. Sundnes. 1974. Acoustic telemetry from fish. U.S. Fish. Bull. 72: 251-255.

    Google Scholar 

  • Karlsen, H.E. 1992a. The inner ear is responsible for detection of infrasound in the perch (Perca fluviatilis). J. exp. Biol. 171: 163-172.

    Google Scholar 

  • Karlsen, H.E. 1992b. Infrasound sensitivity in the plaice (Pleuronectes platessa). J. exp. Biol. 171: 173-187.

    Google Scholar 

  • Karlsen, H.E. & O. Sand. 1991. Infrasound detection in fish. Biomed. Res. 12, suppl. 2: 217-219.

    Google Scholar 

  • Knudsen, F.R., P.S. Enger & O. Sand. 1992. Awareness reactions and avoidance responses to sound in juvenile Atlantic salmon, Salmo salar L. J. Fish Biol. 40: 523-534.

    Google Scholar 

  • Knudsen, F.R., P.S. Enger & O. Sand. 1994. Avoidance responses to low frequency sound in downstream migrating Atlantic salmon smolt, Salmo salar L. J. Fish Biol. 45: 227-233.

    Google Scholar 

  • Knudsen, F.R., I. Aarstad, L.A. Lossius & P.S. Enger. 1991. Heart rate as a measure of stress in rainbow trout, cod and turbot in captivity. Acta physiol. Scand. 143: 12A.

    Google Scholar 

  • Knudsen, F.R., C.B. Schreck, S.M. Knapp, P.S. Enger & O. Sand. 1997. Infrasound produces flight and avoidance responses in Pacific juvenile salmonids. J. Fish Biol. 51: 824-829.

    Google Scholar 

  • Mann, D.A., Z. Lu & A.N. Popper. 1997. A clupeid fish can detect ultrasound. Nature 389: 341.

    Google Scholar 

  • Nestler, J.M., G.R. Ploskey, J. Pickens, J.K. Menezes & C. Scilt. 1992. Responses of blueback herring to high-frequency sound and implications for reducing entrainment at hydropower dams. N. Amer. J. Fish. Manage. 12: 667-683.

    Google Scholar 

  • Ross, Q.E., D.J. Dunning, R.Thorne, J.K. Menezes, G. Tiller. & J.K. Watson. 1993. Response of alewives to high-frequency sound at a power plant on Lake Ontario. N. Amer. J. Fish. Manage. 13: 291-303.

    Google Scholar 

  • Ross, Q.E., D.J. Dunning, J.K. Menezes, M.J. Kenna & G. Tiller. 1996. Reducing impingement of alewives with high-frequency sound at a power plant intake on Lake Ontario. N. Amer. J. Fish. Manage. 16: 548-559.

    Google Scholar 

  • Sand, O. & P.S. Enger. 1973. Evidence for an auditory function of the swimbladder in the cod. J. exp. Biol. 59: 405-414.

    PubMed  Google Scholar 

  • Sand, O. & A.D. Hawkins. 1973. Acoustic properties of the cod swimbladder. J. exp. Biol. 58: 797-820.

    Google Scholar 

  • Sand, O. & H.E. Karlsen. 1986. Detection of infrasound by the Atlantic cod. J. exp. Biol. 125: 197-204.

    PubMed  Google Scholar 

  • Vøllestad, L.A. & B. Jonsson. 1988. A 13-year study of the population dynamics and growth of the European eel Anguilla anguilla in a Norwegian river: evidence for density-dependent mortality, and development of a model for predicting yield. J. Anim. Ecol. 57: 983-997.

    Google Scholar 

  • Vøllestad, L.A., B. Jonsson, N.A. Hvidsten, T.F. Næsje, Ø. Haraldstad & J. Ruud-Hansen. 1986. Environmental factors regulating the seaward migration of European silver eels (Anguilla anguilla). Can. J. Fish. Aquatic. Sci. 43: 1909-1916.

    Google Scholar 

  • Vøllestad, L.A., B. Jonsson, N.A. Hvidsten & T.F. Næsje. 1994. Experimental test of environmental factors influencing the seaward migration of European silver eels. J. Fish Biol. 45: 641-651.

    Google Scholar 

  • Wolf, P. 1951. A trap for the capture of fish and other organisms moving downstream. Trans. Amer. Fish. Soc. 80: 41-45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sand, O., Enger, P.S., Karlsen, H.E. et al. Avoidance Responses to Infrasound in Downstream Migrating European Silver Eels, Anguilla anguilla . Environmental Biology of Fishes 57, 327–336 (2000). https://doi.org/10.1023/A:1007575426155

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007575426155

Navigation