Skip to main content
Log in

The Mechanism of Reactive NO3 Uptake on Dry NaX (X=Cl, Br)

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A simple kinetic mechanism of nitrate radicals uptake on dry sea-salt NaCl, NaBr surfaces is proposed. The mechanism includes adsorption/desorption equilibrium and unimolecular decomposition of the adsorbed complex: NO3(g) + NaX(s) ↔ (NO3-NaX)(s); (NO3-NaX)(s) → NaNO3 + X(s) Two techniques were used: the matrix isolation ESR and mass spectrometry. The uptake coefficient (γ) is found to be dependent on exposure time of salt to NO3 for raw coating. The initial γ(t→0) is higher than the observable steady-state γobs. At room temperature γobs is independent of [NO3] at low [NO3] = 3 × 109 - 1011 cm-3, but it is inversely proportional to [NO3] at concentrations higher than 1012 cm-3. At temperatures above 100 °C, γobs becomes independent of [NO3] in a wider range of [NO3]. An increased number of dislocations is supposed to exist in the case of raw coating. Due to a wide spread of the surface sites binding energy with the ionic lattice near dislocations, the part of surface complexes has lower binding energy and "burns" more rapidly. That burning determines the transition from γ(t→0) down to γobs.

The kinetic parameters and elementary rate coefficients are obtained. The recommended γ for low atmospheric NO3 concentration are in the range of 0.002 ± 0.04 for NaCl and 0.1-0.3 for NaBr depending on a mechanism of the γ(t) relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behnke, W., George, C., Scheer, V., and Zetzsch, C., 1997: Production and decay of ClNO2 from the reaction of gaseous N2O5 with NaCl solution: bulk and aerosol experiments, J. Geophys. Res. 102, 3795-3804.

    Google Scholar 

  • Brasseur, G., and Solomon, S., 1984: Aeronomy of the middle atmosphere, D. Reidel Publishing company.

  • Cooper, P. L, and Abbatt, J. P. D., 1996: Heterogeneous interaction of OH and HO2 radicals with surfaces characteristic of atmospheric particulate matter, J. Phys. Chem., 100, 2249-2254.

    Google Scholar 

  • Fenter, F. F., Caloz, F., and Rossi, M. J., 1996: Heterogeneous kinetics of N2O5 uptake on salt with a systematic study of the role of surface presentation (for N2O5 and HNO3). J. Phys. Chem. 100, 1008-1019.

    Google Scholar 

  • Finlayson-Pitts, B. J., Ezell, M. J., and Pitts J. N. (Jr.), 1989: Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles within gaseous N2O5 and ClONO2, Nature 337, 241-244.

    Google Scholar 

  • Frenzel, A., Scheer, V., Sikorski, R., George Ch., W. Behnke, and Zetzsch, C., 1998: Heterogeneous interconversion reactions of BrNO2, CINO2, Br2, and Cl2, J. Phys. Chem. A 102, 1329-1337.

    Google Scholar 

  • Gershenzon, Yu. M., Grigorieva, V. M., Ivanov, A. V., and Remorov, R. G., 1995: O3 and OH sensitivity to heterogeneous sinks of HOx and CH3O2 on aerosol particles, Faraday Discus., 100, 83-100.

    Google Scholar 

  • Hausmann, M. and Platt, U., 1994: Spectroscopic measurement of bromine oxide and ozone in the high Arctic during Polar Sunrise Experiment 1992, J. Geophys. Res. 99, 25399-25414.

    Google Scholar 

  • Ivanov, A. V., Gershenzon, Yu. M., Gratapanche, F., Devolder, P., Sawerysyn, J.-P., 1996: Heterogeneous loss of OH on NaCl and NH4NO3 at tropospheric temperatures, Annales Geophysicae 14, 659-664.

    Google Scholar 

  • Iviev, L. C., 1982: Chemical composition and structure of atmospheric aerosols, Leningrad; 1-366. (in Russian)

  • Kelman, V. M., Karetskaya, S. P., Fedulina, L. V., and Yakushev, E. V., 1979: Electron-optical elements of the prismatic charge-particles spectrometers, Alma-Ata, “Nauka”, 89-98.

  • Knuniants, I. L. (Ed.), 1990: Chemical Encyclopedia, 3, Moscow (in Russian).

  • Mikheikin. I. D., Abronin I. A., Zhidomirov. G. M., and Kazanskii V. B., 1978: Electronic structure calculations of molecules adsorbed on the ionic crystal surface. J. of phys.chem. LII(2), 448-449 (in Russian).

    Google Scholar 

  • Pszenny, A. A. P., Keene, W. C., Jacob, D. J., Fan, S., Maben, J. R., Zetwo, M. P., Springer-Young, M., and Galloway, J. N., 1993: Evidence of inorganic chlorine gases other than hydrogen chloride in marine surface air, Geophys. Res. Lett. 20, 699-702.

    Google Scholar 

  • Platt, U., Winer, A. M., Biermann, H. M., Atkinson, R., and Pitts, J. N. (Jr.), 1984: Measurements of nitrate radical concentrations in continental air, Env. Sci. Technol. 18, 365-369.

    Google Scholar 

  • Rudich, Y., Talukdar, R. K., Ravishankara, A. R., and Fox, R. W., 1996: Reactive uptake of NO3 on pure water and ionic solutions, J. Geophys. Res. 101, 21023-21031.

    Google Scholar 

  • Sander, R. and Crutzen, P. J., 1996: Model study indicating halogen activation and ozone destruction in polluted air mass transported to the sea, J. Geophys. Res. 101, 9121-9138.

    Google Scholar 

  • Sawerysyn, J.-P, 1998: private communication.

  • Seisel, S., Caloz, F., Fenter, F. F., Van den Bergh, H., Rossi, M. J., 1997: Heterogeneous reaction of NO3 with NaCl and KBr: A nonphotolytic source of halogen atoms, Geophys. Res. Lett. 24, 2757-2760.

    Google Scholar 

  • Singh, H. B., Gregory, G. L., Anderson, B., Browell, E., Sachse, G. W., Davis, D. D., Crawford, J., Bradshaw, J. W., Talbot, R. Blake, D. R. Thornton, D., Newell, R., and Merill, J., 1996: Low ozone in the marine boundary layer of the tropical pacific ocean; photochemical loss, chlorine atoms, and entrainment, J. Geophys. Res. 101, 1907-1917.

    Google Scholar 

  • Tovbin, Yu. K., 1990: Theory of Physical Chemistry Processes at Gas-solid Interface. Moscow, Nauka (in Russian)

  • Vogt, R., Crutzen, P. J., and Sander, R., 1996: A mechanism of halogen release from sea-salt aerosol in the remote marine boundary layer, Nature, 383, 327-330.

    Google Scholar 

  • Vogt, R., Finlayson-Pitts, B. J., 1994: A diffuse reflectance infrared Fourier transform spectroscopic (DRIFTS) study of the surface reaction of NaCl with gaseous NO2 and HNO3, J. Phys. Chem. 98, 3747-3755.

    Google Scholar 

  • Wayne, R. P., Barnes, I., Biggs, P., Burrows J. P., Canosa-Mas C. E., Hjorth, J., Le Bras, G., Moortgat, G. K., Perner, D., Poulet, G., Restelli, G., and Sidebottom, H., 1991: The nitrate radical: physics, chemistry, and the atmosphere, Atmos. Environ. 25A, 1-203.

    Google Scholar 

  • Zelenov, V. V., Loboda, A. V., Aparina, E. V., Dodonov, A. F., 1997: Kinetic mass spectrometry and its application to the reaction mechanism studies under nonequilibrium energy distribution of products, Proceedings of Russian Academy of Sciences (Energetics), NI, 70-86 (in Russian).

    Google Scholar 

  • Zetzsch, C. and Behnke, W., 1992: Heterogeneous photochemical sources of atomic chlorine in the troposphere, Ber. Bunsenges. Phys. Chem. 96, 488-495.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gershenzon, M.Y., Il'in, S., Fedotov, N.G. et al. The Mechanism of Reactive NO3 Uptake on Dry NaX (X=Cl, Br). Journal of Atmospheric Chemistry 34, 119–135 (1999). https://doi.org/10.1023/A:1006258205551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006258205551

Navigation