Skip to main content
Log in

Identification of tomato Lhc promoter regions necessary for circadian expression

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Expression of the light-harvesting complex protein genes (Lhc) is under the control of a circadian clock. To dissect the molecular regulatory components of the circadian clock a promoter deletion analysis of four tomato Lhc genes was performed in transgenic tobacco plants. The important 5′-upstream promoter regions are present at different positions relative to the transcription start site of Lhc b11, b12, Lhc a3 and Lhc a4. A short sequence of 47 nucleotides is necessary for conferring circadian Lhc mRNA oscillations. Sequence alignment of the specified promoter regions revealed a novel motif ‘CAANNNNATC’. This motif is conserved in 5′-upstream regions of clock controlled Lhc genes and overlaps with a sequence relevant in phytochrome mediated gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Anderson JM, Andersson B: The dynamic photosynthetic membrane and regulation ofsolar energy conversion. Trends Biochem Sci 13: 351–355 (1988).

    PubMed  Google Scholar 

  2. Anderson SL, Teakle GR, Martino-Catt SJ, KaySA: Circadian clock-and phytochrome-regulated transcription is conferred by a 78 bp cis-acting domain of the Arabidopsis cab 2 promoter. Plant J 6: 457–470 (1994).

    Article  PubMed  Google Scholar 

  3. Armstrong GA, Weisshaar B, Hahlbrock K: Homodimeric and heterodimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ‘ACGT’ cores. Plant Cell 4: 525–537 (1992).

    Article  PubMed  Google Scholar 

  4. Aronson BD, Johnson KA, Loros JJ, Dunlap JC: Negative feedback defining a circadian clock: Autoregulation of the clock gene frequency. Science 263: 1578–1584 (1994).

    PubMed  Google Scholar 

  5. Barrett JW, Beech RN, Dancik BP, Strobeck C: A genomic clone of a type I cab gene encoding a light harvesting chlorophyll a/b binding protein of photosystem II identified from lodgepole pine. Genome 37: 166–172 (1994).

    PubMed  Google Scholar 

  6. Borello U, Ceccarelli E, Giuliano G: Constitutive, lightresponsive, and circadian clock-responsive factors compete for the different I-box elements in plant-regulated promoters. Plant J 4: 611–619 (1993).

    PubMed  Google Scholar 

  7. Carre IA, Kay SA: Multiple DNA-protein complexes at a circadian-regulated promoter element. Plant Cell 7: 2039–2051 (1995).

    PubMed  Google Scholar 

  8. Castresana C, Staneloni R, Malik VS, Cashmore AR: Molecular characterization of two clusters of genes encoding the type I cab polypeptides of PSII in Nicotiana plumbaginifolia. Plant Mol Biol 10: 117–126 (1987).

    Google Scholar 

  9. Donald RGK, Schindler U, Batschauer A, Cashmore AR: The plant G-box promoter sequence activates transcription in Saccharomyces cerevisiae and is bound in vitro by a yeast activity similar to GBF, the plant G-box binding factor. EMBO J 9: 1727–1735 (1990).

    PubMed  Google Scholar 

  10. Fejes E, Pay A, Kanevsky I, Szell m, Adam E, Kay SA, Nagy F: A 268 bp upstream sequence mediates the circadian clockregulated transcription of the wheat cab 1 gene in transgenic plants. Plant Mol Biol 15: 921–932 (1990).

    PubMed  Google Scholar 

  11. Foster R, Izawa T, Chua NH: Plant bZIP proteins gather at ‘ACGT’ elements. FASEB J 8: 192–199 (1994).

    PubMed  Google Scholar 

  12. Gidoni D, Brosio P, Bond-Nutter D, Bedbrook J, Dunsmuir P: Novel cis-acting elements in Petunia cab gene promoters. Mol Gen Genet 215: 337–344 (1994).

    Google Scholar 

  13. Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnik PA, Cashmore AR: An evolutionary conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci USA 85: 7089–7093 (1988).

    PubMed  Google Scholar 

  14. Grob U, Stüber K: Discrimination of phytochrome-dependent, light-inducible from non-light-inducible plant genes. Prediction of a common light-responsive element (LRE) in phytochrome-dependent, light-inducible plant genes. Nucl Acids Res 15: 9957–9973 (1987).

    PubMed  Google Scholar 

  15. Izawa T, Foster R, Chua NH: Plant bZIP protein binding specificity. J Mol Biol 230: 1131–1144 (1993).

    Article  PubMed  Google Scholar 

  16. Jansson S: The light-harvesting chlorophyll a/b binding proteins. Biochim Biophys Acta 1184: 1–19 (1994).

    PubMed  Google Scholar 

  17. Kay S: PAS, present, and future: clues to the origins of circadian clocks. Science 276: 753–754 (1997).

    PubMed  Google Scholar 

  18. Kellmann JW, Merforth N, Wiese M, Pichersky E, Piechulla B: Concerted circadian oscillations in transcript levels of nineteen Lha/b (cab) genes in Lycopersicon esculentum (tomato). Mol Gen Genet 237: 439–448 (1993).

    PubMed  Google Scholar 

  19. Kondo T, Strayer CA, Kulkarni RD, Taylor W, Ishiura M, Golden SS, Johnson CH: Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. Proc Natl Acad Sci USA 90: 5672–5676 (1993).

    PubMed  Google Scholar 

  20. Lagarias D.M., Shu-Hsing W., Lagarias J.C: A typical phytochrome gene structure in the green alga Mesotaenium caldariorum. Plant Mol Biol 29: 1127–1142 (1995).

    PubMed  Google Scholar 

  21. Lam E, Chua NH: ASF-2: A factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in cab promoters. Plant Cell 1: 1147–1156 (1989).

    Article  PubMed  Google Scholar 

  22. Manzara T, Carrasco P, Gruissem W: Develpmental and organspecific changes in promoter DNA-protein interactions in the tomato rbc S gene family. Plant Cell 3: 1305–1316 (1991).

    Google Scholar 

  23. Millar A, Kay SA: Circadian control of cab gene transcription and mRNA accumulation in Arabidopsis. Plant Cell 3: 541–550 (1991).

    Article  PubMed  Google Scholar 

  24. Piechulla B, Gruissem W: Diurnal mRNA fluctuations of nuclear and plastid genes in developing tomato fruits. EMBO J 6: 3593–3599 (1987).

    PubMed  Google Scholar 

  25. Piechulla B, Kellmann JW, Pichersky E, Schwartz E, Förster HH: Determination of steady-state mRNA levels of individual chlorophyll a/b binding protein genes of the tomato cab gene family. Mol Gen Genet 230: 413–422 (1991).

    Article  PubMed  Google Scholar 

  26. Piechulla B: 'Circadian clock’ directs the expression of plant genes. Plant Mol Biol 22: 533–542 (1993).

    Article  PubMed  Google Scholar 

  27. Riesselmann S, Piechulla B: Diurnal and circadian lightharvesting complex and quinone B-binding protein synthesis in leaves of tomato (Lycopersicon esculentum). Plant Physiol 100: 1840–1845 (1992).

    Google Scholar 

  28. Sassone-Corsi P: Rhythmic transcription and regulatory loops: winding up the biological clock. Cell 78: 361–364 (1994).

    PubMed  Google Scholar 

  29. Schindler U, Cashmore AR: Photoregulated gene expression may involve ubiquitous DNA binding proteins. EMBO J 9: 3415–3427 (1990).

    PubMed  Google Scholar 

  30. Wang Z-Y, Kenigsbuch D, Sun L, Harel E, Ong M.S, Tobin E.M: A myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhc b gene. Plant Cell 9: 491–507 (1997).

    PubMed  Google Scholar 

  31. Williams ME, Foster R, Chua NH: Sequences flanking the hexameric G-box core ‘ACGTTG’ affect the specificity of protein binding. Plant Cell 4: 485–496 (1992).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piechulla, B., Merforth, N. & Rudolph, B. Identification of tomato Lhc promoter regions necessary for circadian expression. Plant Mol Biol 38, 655–662 (1998). https://doi.org/10.1023/A:1006094015513

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006094015513

Navigation