Skip to main content
Log in

Fundamental Geometric Structures for the Dirac Equation in General Relativity

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

We present an axiomatic approach to Dirac's equation in General Relativity based on intrinsically covariant geometric structures. Structure groups and the related principal bundle formulation can be recovered by studying the automorphisms of the theory. Various aspects can be most neatly understood within this context, and a number of questions can be most properly addressed (specifically in view of the formulation of QFT on a curved background). In particular, we clarify the fact that the usual spinor structure can be weakened while retaining all essential physical aspects of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benn, I. M. and Tucker, R. W.: An Introduction to Spinors and Geometry with Applications in Physics, Adam Hilger, Bristol, Philadelphia, 1987.

    Google Scholar 

  2. Bleecker, D.: Gauge Theory and Variational Principles, Addison-Wesley, Reading, Mass., 1981.

    Google Scholar 

  3. Blaine Lawson, H. and Michelson, M.-L.: Spin Geometry, Princeton University Press, Princeton, New Jersey, 1989.

    Google Scholar 

  4. Birrel, N. D. and Davies, P. C. W.: Quantum Fields in Curved Space, Cambridge University Press, Cambridge, 1982.

    Google Scholar 

  5. Budinich, P. and Trautman, A.: An introduction to the spinorial chessboard, J. Geom. Phys. 4(1987), 361-390.

    Google Scholar 

  6. Cabras, A. and Canarutto, C.: Systems of principal tangent-valued forms, Rend. Mat. Appl. (7) 11(1991), 471-493.

    Google Scholar 

  7. Cabras, A. and Canarutto, C.: The system of principal connections, Rend. Mat. Appl. (7) 11(1991), 849-871.

    Google Scholar 

  8. Canarutto, C., Jadczyk, A. and Modugno, M.: Quantum mechanics of a spin particle in a curved spacetime with absolute time, Rep. Math. Phys. 36(1995), 95-140.

    Google Scholar 

  9. Canarutto, C. and Jadczyk, A.: A 2-spinor approach to Einstein-Cartan-Maxwell-Dirac fields, in: Proc. XII Italian Conference on General Relativity and Gravitation, 23-27 September 1996, World Scientific, Singapore.

  10. Chevalley, C.: The Algebraic Theory of Spinors, Columbia University Press, 1954.

  11. Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras, Kluwer Acad. Publ., Dordrecht, 1990.

    Google Scholar 

  12. García, P. L.: Connections and 1-jet fibre bundle, Rend. Semin. Mat. Univ. Padova 47(1972), 227-242.

    Google Scholar 

  13. Garcíia, P. L.: The Poincaré-Cartan invariant in the calculus of variations, Sympos. Math. 14(1974), 219-246. ACAP1294.tex; 13/02/1998; 16:45; v.7; p.32

    Google Scholar 

  14. Geroch, R. P.: Spinor structures of space-times in general relativity, I, J. Math. Phys. 9(1968), 1739-1744.

    Google Scholar 

  15. Geroch, R. P.: Spinor structures of space-times in general relativity, II, J. Math. Phys. 11(1970), 343-348.

    Google Scholar 

  16. Godbillon, C.: Géométrie différentielle et mécanique analitique, Hermann, Paris, 1969.

    Google Scholar 

  17. Goldsmith, H. and Sternberg, S.: The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier, Grenoble 23(1973), 203-267.

    Google Scholar 

  18. Greub, W.: Multilinear Algebra, Springer, New York, 1978.

    Google Scholar 

  19. Greub, W. and Petry, H. R.: Minimal coupling and complex line bundles, J. Math. Phys. 16(1975), 1347-1351.

    Google Scholar 

  20. Greub, W. and Petry, H. R.: The curvature tensor of Lorentz manifolds with spin structure, Part I, C.R. Math. Rep. Acad. Sci. Canada IV(1982), 31-36, Part II, C.R. Math. Rep. Acad. Sci. Canada V(1982), 217-222.

    Google Scholar 

  21. Hestenes, D. and Sobczyk, G.: Clifford Algebra to Geometric Calculus, D. Reidel, Dordrecht, 1984.

    Google Scholar 

  22. Huggett, S. A. and Tod, K. P.: An Introduction to Twistor Theory, Cambridge Univ. Press, Cambridge, 1985.

    Google Scholar 

  23. Itzykson, C. and Zuber, J.-B.: Quantum Field Theory, McGraw-Hill, New York, 1980.

    Google Scholar 

  24. Infeld, L. and van der Waerden, B. L.: Die Wellengleichungdes Elektrons in der Allgemeinem Relativitätstheorie, Sitz. Ber. Preuss. Akad. Wiss., Phys.-Math. Kl. 9(1933), 380-401.

    Google Scholar 

  25. Jadczyk, A. and Modugno, M.: An outline of a new geometrical approach to Galilei general relativistic quantum mechanics, in: C. N. Yang et al.(eds), Proc. XXI Int. Conf. on Differential Geometric Methods in Theoretical Physics, Tianjin 5-9 June 1992, World Scientific, Singapore, 1992, pp. 543-556.

    Google Scholar 

  26. Jadczyk, A. and Modugno, M.: Galilei general relativistic quantum mechanics, preprint Dip. Mat. Appl. 'G. Sansone', Florence 1993.

    Google Scholar 

  27. Janyška, J. and Modugno, M.: Phase space in general relativity, preprint Dip. Mat. Appl. 'G. Sansone', Florence 1996.

    Google Scholar 

  28. Kastler, D.: Introduction a l'électrodynamique quantique, Dunod, Paris, 1961.

    Google Scholar 

  29. Kolař, I.: Higher order absolute differentiation with respect to generalised connections, Differential Geometry, Banach Center Publications 12, 1984, pp. 153-161.

    Google Scholar 

  30. Lichnerowicz, A.: Propagateurs, commutateurs et anticommutateurs en relativité generale, in: C. DeWitt and B. DeWitt (eds), Relativity, Groups and Topology, Gordon and Breach, New York, 1964, pp. 821-861.

    Google Scholar 

  31. Mangiarotti, L. and Modugno, M.: Fibered spaces, jet spaces and connections for field theory, in: Proc. Int. Meeting on Geom. and Phys., Pitagora Ed., Bologna 1983, pp. 135- 165.

    Google Scholar 

  32. Mangiarotti, L. and Modugno, M.: Some results on the calculus of variations on jet spaces, Ann. Inst. H. Poincaré 39(1983), 29-43.

    Google Scholar 

  33. Modugno, M.: Torsion and Ricci tensor for nonlinear connections, Differential Geom. Appl. 2(1991), 177-192.

    Google Scholar 

  34. Modugno, M. and Vitolo, R.: Quantum connection and Poincaré-Cartan form, in: G. Ferrarese (ed.), Proc. Meeting in Honour of A. Lichnerowicz, Frascati (Rome), Pitagora Editrice, Bologna, 1995.

    Google Scholar 

  35. Penrose, R. and Rindler, W.: Spinors and Space-Time, I: Two-Spinor Calculus and Relativistic Fields, Cambridge Univ. Press, Cambridge, 1984.

    Google Scholar 

  36. Penrose, R. and Rindler, W.: Spinors and Space-Time, II: Spinor and Twistor Methods in Space-Time Geometry, Cambridge Univ. Press, Cambridge, 1988.

    Google Scholar 

  37. Prugovečki, E.: Principles of Quantum General Relativity, World Scientific, Singapore, 1995.

  38. Sternberg, S.: Group Theory and Physics, Cambridge Univ. Press, Cambridge, 1994.

    Google Scholar 

  39. Trautman, A.: Noether equations and conservation laws, Comm. Math. Phys. 6(1967), 248-261. ACAP1294.tex; 13/02/1998; 16:45; v.7; p.33

    Google Scholar 

  40. Trautman, A. and Trautman, K.: Generalized pure spinors, J. Geom. Phys. 15(1994), 1-22.

    Google Scholar 

  41. Wald, R. M.: General Relativity, The University of Chicago Press, Chicago, 1984.

    Google Scholar 

  42. Wells, R. O.: Differential Analysis on Complex Manifolds, Springer-Verlag, New York, 1980. ACAP1294.tex; 13/02/1998; 16:45; v.7; p.34

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canarutto, D., Jadczyk, A. Fundamental Geometric Structures for the Dirac Equation in General Relativity. Acta Applicandae Mathematicae 51, 59–92 (1998). https://doi.org/10.1023/A:1005874109388

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005874109388

Navigation