Skip to main content
Log in

Modulation of the Voltage-Dependent Anion Channel (VDAC) by Glutamate1

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The voltage-dependent anion channel (VDAC), also known as mitochondrial porin, is a large channel permeable to anions, cations, ATP, and other metabolites. VDAC was purified from sheep brain synaptosomes or rat liver mitochondria using a reactive red-agarose column, in addition to the hydroxyapatitate column. The red-agarose column allowed further purification (over 98%), concentration of the protein over ten-fold, decreasing Triton X-100 concentration, and/or replacing Triton X-100 with other detergents, such as Nonidet P-40 or octylglucoside. This purified VDAC reconstituted into planar-lipid bilayer, had a unitary maximal conductance of 3.7 ± 0.1 nS in 1 M NaCl, at 10 mV and was permeable to both large cations and anions. In the maximal conducting state, the permeability ratios for Na+, acetylcholine+, dopamine,+ and glutamate, relative to Cl, were estimated to be 0.73, 0.6, 0.44, and 0.4, respectively. In contrast, in the subconducting state, glutamate was impermeable, while the relative permeability to acetylcholine+ increased and to dopamine+ remained unchanged. At the high concentrations (0.1–0.5 M) used in the permeability experiments, glutamate eliminated the bell shape of the voltage dependence of VDAC channel conductance. Glutamate at concentrations of 1 to 20 mM, in the presence of 1 M NaCl, was found to modulate the VDAC channel activity. In single-channel experiments, at low voltages (±10 mV), glutamate induced rapid fluctuations of the channel between the fully open state and long-lived low-conducting states or short-lived closed state. Glutamate modification of the channel activity, at low voltages, is dependent on voltage, requiring short-time (20–60 sec) exposure of the channel to high membrane potentials. The effect of glutamate is specific, since it was observed in the presence of 1 M NaCl and it was not obtained with aspartate or GABA. These results suggest that VDAC possesses a specific glutamate-binding site that modulates its activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Benz, R. (1994). Biochim. Biophys. Acta 1197, 167-196.

    Google Scholar 

  • Benz, R., Kottke, M., and Brdiczka, D. (1990). Biochim.Biophys. Acta 1022, 311-318.

    Google Scholar 

  • Babel, D., Walter, G., Gotz, H., Thinnes, E P., Jurgens, L., Konig, U., and Hilschmann, N. (1991). Biol. Chem. Hoppe-Seyler 372, 1027-1034.

    Google Scholar 

  • Basford, R. E. (1967). Methods Enzymol. 10, 96-101.

    Google Scholar 

  • Bathori, G., Parolini G., Tombola, I., Szabo, F, Messina, I., Oliva, A., De Pinto, M., Lisanti, V., Sargiacomo M., and Zoratti, M. (1999). J. BioI. Chem. 274, 29607-29612.

    Google Scholar 

  • Blachly-Dyson, E., Peng, S., Colombini, M. and Forte, M. (1990). Science, 247, 1233-1236.

    Google Scholar 

  • Colombini, M. (1994). Current Topics Membr. 42, 73-101.

    Google Scholar 

  • Colombini, M., Yeung, C L., Tung, J., and Koeing, T. (1987). Biochim. Biophys. Acta 905, 279-286.

    Google Scholar 

  • de Pinto, V., Prezioso, G., and Palmieri, E (1987). Biochim. Biophys. Acta 905, 499-502.

    Google Scholar 

  • Dermietzel, R., Hwang, T. K., Buettner, R., Hofer, A., Dotzler, E., Kremer, M., Deutzmann, R., Thinnes, E P., Fishman, G., Spray, D., and Siemen, D. (1994). Proc. Natl. Acad. Sci. USA 91, 499-503.

    Google Scholar 

  • Floker, H., Thinnes, E P., Winkelbach, H., Stadtmuller, U., Paetzold, G., Morys-Wortmann, C, Hess, D., Sternbach, H., Zimmermann, B., Kaufmann-Kolle, P., Heiden, M., Karabions, A., Reymann, S., Lalk, V. E., and Hilschmann, N. (1994). Biol. Chem. Hoppe-Seyler 375, 513-520.

    Google Scholar 

  • Gincel, D., Zaid, H., and Shoshan-Barmatz, V. (2000). J. BioI. Chem., manuscript submitted.

  • Guibert, B., Dermietzel, R., and Sieman, D. (1998). Intern. J. Biochem. Cell. Biol. 30, 379-391.

    Google Scholar 

  • Guo, X. W. and Mannella, CA. (1993). Biophys. J. 64, 545-549.

    Google Scholar 

  • Hodge, T. and Colombini, M. (1997). J. Membr. Biol. 157 , 271-279.

    Google Scholar 

  • Holden, M. J. and Colombini, M. (1993). Biochim. Biophys. Acta 1144, 396-402.

    Google Scholar 

  • Horn, A., Reymann, S., and Thinnes, F. P. (1998). Mol. Genet. Metab. 63, 239-242.

    Google Scholar 

  • Huntter, W. B., Schiebler, W., Greengard, P., and de Camilli, P. (1983). Cell. Biol. 96, 1374-1388.

    Google Scholar 

  • Kaplan, R. S. and Pedersen, P. L. (1985). Anal. Biochem. 150 , 97-104.

    Google Scholar 

  • Krasitnikov, O. V., Carneiro, C. M. M., Yuldasheva, L. N., Camposde-Carvalho, A. C., and Nogueira, R. A., (1996). Brazil. J. Med. Biol. Res. 29, 1691-1697.

    Google Scholar 

  • Laemmli, U. K. (1970). Nature London 227, 680-685.

    Google Scholar 

  • Lee, A., Zizi, M., and Colombini, M. (1994). J. Biol. Chem. 269, 30974-30980.

    Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951). J. Biol. Chem. 193, 265-275.

    Google Scholar 

  • Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. (1998). Cell 94, 481-490.

    Google Scholar 

  • Mangan, P. S. and Columbini, M. (1987). Proc. Natl. Acad. Sci. USA 84, 4896-4900.

    Google Scholar 

  • Mannella, C. A. (1997). J. Bioenerg. Biomembr. 29, 525-531.

    Google Scholar 

  • Mannella, C. A., Forte, M., and Colombini, M. (1992). J. Bioenerg. Biomembr. 24, 7-19.

    Google Scholar 

  • Reymann, S., Flarke, H., Heiden, M., Jakob, C., Stadtmuller, U., Steinacker, P., Lalk, V. E., Pardowitz, I., and Thinnes, F. R. (1995). Biochem. Mol. Med. 54

  • Reumann, S., Maier, E., Heldt, H. W., and Benz, R. (1998). Eur. J. Biochem. 251, 359-366.

    Google Scholar 

  • Rostovtsera, T. and Bezrukov, S. M. (1998). Biophys. J. 74 , 2365-2373.

    Google Scholar 

  • Rostovtseva, T. and Colombini, M. (1996). Biophys. J. 72 , 1954-1962.

    Google Scholar 

  • Rostovtseva, T. and Colombini, M. (1997). J. BioI. Chem. 271 , 28006-28008.

    Google Scholar 

  • Shafir, I., Feng, W., and Shoshan-Barmatz, V. (1998a). Eur. J.Biochem. 253, 627-636.

    Google Scholar 

  • Shafir, I., Feng, W., and Shoshan-Barmatz, V. (1998b). J. Bioenerg. Biomembr. 30, 499-510.

    Google Scholar 

  • Shoshan-Barmatz, V., Hadad, N., Feng, W., Shafir, I., Orr, I., Varsanyi, M., and Heitmeyer, M. G. (1996). FEBS Lett. 386, 205-210.

    Google Scholar 

  • Siadat, S., Reymann, S., Horn, A., and Thinnes, F. P. (1998). Mol. Genet. Metab. 65, 246-249.

    Google Scholar 

  • Towbin, H., Staehelin, T., and Gordon, J. (1979). Proc. Natl. Acad. Sci. USA 76, 4350-4354.

    Google Scholar 

  • Zizi, M., Forte, M., Blachly-Dyson, E., and Colombini, M. (1994). J. BioI. Chem. 269, 1614-1616.

    Google Scholar 

  • Zizi, M., Byrd, C., Boxus, R., and Colombini, M. (1998). Biophys. J. 75, 704-713.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gincel, D., Silberberg, S.D. & Shoshan-Barmatz, V. Modulation of the Voltage-Dependent Anion Channel (VDAC) by Glutamate1. J Bioenerg Biomembr 32, 571–583 (2000). https://doi.org/10.1023/A:1005670527340

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005670527340

Navigation