Skip to main content
Log in

ATP Synthases in the Year 2000: Evolving Views about the Structures of These Remarkable Enzyme Complexes

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

This introductory article briefly summarizes how our views about the structural features ofATP synthases (F0F1) have evolved over the past 30 years and also reviews some of our currentviews in the year 2000 about the structures of these remarkably unique enzyme complexes.Suffice it to say that as we approach the end of the first year of this new millinium, we canbe conservatively confident that we have a reasonably good grasp of the overall “low-resolution”structural features of ATP synthases. Electron microscopy techniques, combined with the toolsof biochemistry, molecular biology, and immunology, have played the leading role here byidentifying the headpiece, basepiece, central stalk, side stalk, cap, and in the mitochondrialenzyme, the collar around the central stalk. We can be reasonably confident also that we havea fairly good grasp of much of the “high-resolution” structural features of both the F1 moietycomprised of fives subunit types (α, β, γ, δ, and ∈) and parts of the F0 moiety comprised ofeither three (E. coli) or at least ten (mitochondria) subunit types. This information acquiredin several different laboratories, either by X-ray crystallography or NMR spectroscopy, includesdetails about the active site and subunit relationships. Moreover, it is consistent with recentlyreported data that the F1 moiety may be an ATP driven motor, which, during ATP synthesis,is driven in reverse by the electrochemical proton gradient generated by the electron transportchain. The real structural challenges of the future are to acquire at high resolution “complete”ATP synthase complexes representative of different stages of the catalytic cycle during ATPsynthesis and representative also of key regulatory states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abrahams, J. B., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994). Nature (London) 370, 621–628.

    Google Scholar 

  • Abrahams, J. G., Buchanan, S. K., van Raaij, M. J., Fearnley, I. M., Leslie, A. G., and Walker, J. E. (1996). Proc. Natl. Acad. Sci. USA 93, 9420–9424.

    Google Scholar 

  • Amzel, L. M. and Pedersen, P. L. (1978). J. Biol. Chem. 253, 2067–2069.

    Google Scholar 

  • Amzel, L. M., McKinney, M., Narayanan, P., and Pedersen, P. L. (1982). Proc. Natl. Acad. Sci. USA 79, 5852–5856.

    Google Scholar 

  • Bianchet, M. A., Ysern, S., Hullihen, J., Pedersen, P. L., and Amzel, L. M. (1991). J. Biol. Chem. 266, 21197–21201.

    Google Scholar 

  • Bianchet, M. A., Hullihen, J., Pedersen, P. L., and Amzel, L. M. (1998). Proc. Natl. Acad. Sci. USA 95, 11065–11070.

    Google Scholar 

  • Boekema, E. J., Berden, J. A., and Van Heel, M. G. (1986). Biochem. Biophys. Acta 851, 353–360.

    Google Scholar 

  • Bottcher, B., Schwarz, L., and Graber, P. (1998). J. Mol. Biol. 281, 757–762.

    Google Scholar 

  • Braig, K., Menz, R. I., Montgomery, M. G., Leslie, A. G., and Walker, J. E. (2000). Structure Fold Des. 8, 567–573.

    Google Scholar 

  • Capaldi, R. A., Schulenberg, B., Murray, J., and Aggeler, R. (2000). J. Exp. Biol. 203, 29–33.

    Google Scholar 

  • Catterall, W. A. and Pedersen, P. L. (1974). Biochem. Soc. Spec. Publ. 4, 63–88.

    Google Scholar 

  • Catterall, W. A., Coty, W. A., and Pedersen, P. L. (1973). J. Biol. Chem. 248, 7427–7431.

    Google Scholar 

  • Dmitriev, O., Jones, P. C., Jiang, W., and Fillingame, R. H. (1999). J. Biol.Chem. 274, 15598–15604.

    Google Scholar 

  • Ferandez-Moran, H. (1962). Circulation 26, 1039–1065.

    Google Scholar 

  • Gibbons, C., Montgomery, M. G., Leslie, A. G. W., and Walker, J. E. (2000). Biochem. Biophys. Acta, EBEC Short Reports, 11, 212, Nature Struc. Biol. 7, 1055–1061.

    Google Scholar 

  • Girvin, M. E. and Fillingame, R. H. (1995). Biochemistry 34, 1635–1645.

    Google Scholar 

  • Girvin, M. E., Rastogi, V. V., Abildgaard, F., Markley, J. L., and Fillingame, R. H. (1998). Biochemistry 37, 8817–8824.

    Google Scholar 

  • Gogel, E. P., Lucken, U., and Capaldi, R. A. (1987). FEBS Lett. 219, 274–278.

    Google Scholar 

  • Gogel, E. P., Johnson, E., Aggeler, R., and Capaldi, R. A. (1990). Proc. Natl. Acad. Sci. USA 87, 9585–9589.

    Google Scholar 

  • Graber, P., Bottcher, B., and Boekema, E. J. (1990). Bioelectro-chemistry III (Milazzo, G. and Blank, M., eds.), Plenum Press, New York, pp 247–276.

    Google Scholar 

  • Hausrath, A. C., Gruber, G., Matthews, B. W., and Capaldi, R. A. (1999). Proc. Natl. Acad. Sci. USA 96, 13697–13702.

    Google Scholar 

  • Junge, W., Lill, H., and Engelbrecht, S. (1997). Trends Biochem. Sci. 22, 420–423.

    Google Scholar 

  • Kagawa, Y. (1972). Biochem. Biophys. Acta 265, 297–338.

    Google Scholar 

  • Karrash, S. and Walker, J. E. (1999). J. Mol. Biol. 290, 379–384.

    Google Scholar 

  • Ko, Y. H., Hullihen, J., Hong, S., and Pedersen, P. L. (2000). J. Biol. Chem., 276, 32931–32939.

    Google Scholar 

  • Lutter, R., Abrahams, J. B., van Raaij, M. J., Todd, R. J., Lundquist, T., Buchanan, S. K., Leslie, A. G.W., and Walker, J. E. (1993). J. Mol. Biol. 229, 787–790.

    Google Scholar 

  • Mitchell, P. (1979). Science 206, 1148–1159.

    Google Scholar 

  • Orriss, G. L., Leslie, A. G., Braig, K., and Walker, J. E. (1998). Structure 6, 831–837.

    Google Scholar 

  • Oschida, W. J. and Bowman, B. J. (1992). J. Biol. Chem. 267, 18783–18789.

    Google Scholar 

  • Pedersen, P. L. (1996). J. Bioenerg. Biomembr. 38, 389–395.

    Google Scholar 

  • Pedersen, P. L., Hullihen, J., Bianchet, M., Amzel, L. M., and Lebowitz, M. S. (1995). J. Biol. Chem. 270, 1775–1784.

    Google Scholar 

  • Rastogi, V. K. and Girvin, M. E. (1999). Nature (London) 402, 263–268.

    Google Scholar 

  • Seelert, H., Poetsch, A., Dencher, N. A., Engel, A., Stahlberg, H., and Muller, D. J. (2000). Nature (London) 405, 418–419.

    Google Scholar 

  • Shirakihara, Y., Leslie, A. G. W., Abrahams, J. P., Walker, J. E., Udea, T., Sekimato, Y., Kambara, M., Saika, K., Kagawa, Y., and Yoshida, M. (1997). Structure 5, 825–836.

    Google Scholar 

  • Soper, J. W., Decker, G. L., and Pedersen, P. L. (1979). J. Biol. Chem. 254, 11170–11176.

    Google Scholar 

  • Stock, D., Leslie, A. G. W., and Walker, J. E. (1999). Science 286, 1700–1705.

    Google Scholar 

  • Tsuprun, L., Orlova, E. V., and Mesyanzhinova, J. V. (1989). FEBS Lett. 244, 279–282.

    Google Scholar 

  • Uhlin, U., Cox, G. B., and Guss, J. M. (1998). Structure 5, 1219–1230.

    Google Scholar 

  • van Raaij, M. J., Abrahams, J. P., Leslie, A. G. W., and Walker, J. E. (1996). Proc. Natl. Acad. Sci. USA 93, 6913–6917.

    Google Scholar 

  • Velours, J. and Arselin, G. (2000). J. Bioenerg. Biomemb. 32, 383–390.

    Google Scholar 

  • Wilkens, S. and Capaldi, R. A. (1998a). Nature (London) 393, 29.

    Google Scholar 

  • Wilkens, S. and Capaldi, R. A. (1998b). Biochim. Biophys. Acta 1365, 93–97.

    Google Scholar 

  • Wilkens, S. and Capaldi, R. A. (1998c). J. Biol. Chem. 273, 26645–26651.

    Google Scholar 

  • Wilkens, S. Dunn, S. D., Chandler, J., Dahlquist, F.W., and Capaldi, R. A. (1997). Natur. Struct. Biol. 4, 198–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, P.L., Ko, Y.H. & Hong, S. ATP Synthases in the Year 2000: Evolving Views about the Structures of These Remarkable Enzyme Complexes . J Bioenerg Biomembr 32, 325–332 (2000). https://doi.org/10.1023/A:1005594800983

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005594800983

Navigation