Skip to main content
Log in

The Solar Isotope Spectrometer for the Advanced Composition Explorer

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Solar Isotope Spectrometer (SIS), one of nine instruments on the Advanced Composition Explorer (ACE), is designed to provide high- resolution measurements of the isotopic composition of energetic nuclei from He to Zn (Z=2 to 30) over the energy range from ∼10 to ∼100 MeV nucl−1. During large solar events SIS will measure the isotopic abundances of solar energetic particles to determine directly the composition of the solar corona and to study particle acceleration processes. During solar quiet times SIS will measure the isotopes of low-energy cosmic rays from the Galaxy and isotopes of the anomalous cosmic-ray component, which originates in the nearby interstellar medium. SIS has two telescopes composed of silicon solid-state detectors that provide measurements of the nuclear charge, mass, and kinetic energy of incident nuclei. Within each telescope, particle trajectories are measured with a pair of two-dimensional silicon-strip detectors instrumented with custom, very large-scale integrated (VLSI) electronics to provide both position and energy-loss measurements. SIS was especially designed to achieve excellent mass resolution under the extreme, high flux conditions encountered in large solar particle events. It provides a geometry factor of ∼40 cm2 sr, significantly greater than earlier solar particle isotope spectrometers. A microprocessor controls the instrument operation, sorts events into prioritized buffers on the basis of their charge, range, angle of incidence, and quality of trajectory determination, and formats data for readout by the spacecraft. This paper describes the design and operation of SIS and the scientific objectives that the instrument will address.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anders, E. and Ebihara, M.: 1982, ‘Solar-System Abundances of the Elements’, Geochim. Cosmochim. Acta 46, 2363–2380.

    Article  ADS  Google Scholar 

  • Anders, E. and Grevesse, N.: 1989, ‘Abundances of the Elements: Meteoritic and Solar’, Geochim. Cosmochim. Acta 53, 197–214.

    Article  ADS  Google Scholar 

  • Audouze, J.: 1983, in A. Maeder and A. Renzini (eds), ‘Observational Tests of Stellar Evolution Theory’, IAU Symp. 105, 541.

  • Breneman, H. H. and Stone, E. C.: 1985, ‘Solar Photospheric and Coronal Abundances from Solar Energetic Particle Measurements’, Astrophys. J. 199, L57–L61.

    Article  ADS  Google Scholar 

  • Cassé, M. and Paul, J. A.: 1982, ‘On the Stellar Origin of the Ne-22 Excess in Cosmic-Rays’, Astrophys. J. 258, 860–863.

    Article  ADS  Google Scholar 

  • Connell, J. J. and Simpson, J. A.: 1993, ‘The Ulysses Cosmic Ray Isotope Experiment II: Source Abundances of Ne, Mg and Si Derived from High Resolution Measurements’, Proc. 23rd Int. Cosmic Ray Conf., Calgary 1, 559–562.

    Google Scholar 

  • Cook, W. R., Cummings, A. C., Cummings, J. R., Garrard, T. L., Kecman, B., Mewaldt, R. A., Selesnick, R. S., Stone, E. C., and von Rosenvinge, T. T.: 1993a, ‘MAST: A Mass Spectrometer Telescope for Studies of the Isotopic Composition of Solar, Anomalous, and Galactic Cosmic Ray Nuclei’, IEEE Trans. Geosci. Remote Sensing 31, 557–564.

    Article  ADS  Google Scholar 

  • Cook, W. R., Cummings, A. C., Kecman, B., Mewaldt, R. A., Aalami, D., Kleinfelder, S. A., and Marshall, J. H.: 1993b, ‘Custom Analog VLSI for the Advanced Composition Explorer’, Small Instruments Workshop Proc., Pasadena, CA.

  • Cummings, A. C., Stone, E. C., and Webber, W. R.: 1991, ‘The Isotopic Composition of Anomalous Cosmic-Ray Neon’, Proc. 22nd Int. Cosmic Ray Conf., Dublin 3, 362–365.

    Google Scholar 

  • Dietrich, W. F. and Simpson, J. A.: 1979, ‘The Isotopic and Elemental Abundances of Neon Nuclei Accelerated in Solar Flares’, Astrophys. J. Lett. 231, L91–L94.

    Article  ADS  Google Scholar 

  • Dougherty, B. L., Christian, E. R., Cummings, A. C., Leske, R. A., Mewaldt, R. A., Milliken, B. D., von Rosenvinge, T. T., and Wiedenbeck, M. E.: 1996, ‘Characterization of Large-Area Silicon Ionization Detectors for the ACE Mission’, SPIE Conf. Proc. 2806, 188–198.

    ADS  Google Scholar 

  • Fisk, L. A., Kozlovsky, B. and Ramaty, R.: 1974, ‘An Interpretation of the Observed Oxygen and Nitrogen Enhancements in Low-Energy Cosmic Rays’, Astrophys. J. Lett. 190, L35–L38.

    Article  ADS  Google Scholar 

  • Garrard, T. L. and Stone, E. C.: 1993, ‘New SEP-Based Solar Abundances’, Proc. 23rd Int. Cosmic Ray Conf., Calgary 3, 384–387.

    Google Scholar 

  • Geiss, J., Gloeckler, G., and von Steiger, R.: 1996, ‘Origin of C+ Ions in the Heliosphere’, Space Sci. Rev. 78, 43–52.

    Article  ADS  Google Scholar 

  • Geiss, J. F., Buehler, H., Cerutti, H., Eberhardt, P., and Filleux, Ch.: 1972, ‘Solar Wind Composition Experiment’, Apollo-16 Prelim. Sci. Report, NASA SP-315 231, 14–1.

    ADS  Google Scholar 

  • Hubert, F., Bimbot, R., and Gauvin, H.: 1990, ‘Range and Stopping-Power Tables for 2.5–500 MeV/Nucleon Heavy Ions In Solids’, Atom. Dat. Nucl. Dat. Tables 46, 1–213.

    Article  ADS  Google Scholar 

  • Kahler, S. W.: 1992, ‘Solar Flares and Coronal Mass Ejections’, Ann. Rev. Astron. Astrophys. 30, 113–141.

    Article  ADS  Google Scholar 

  • Klecker, B.: 1995, ‘The Anomalous Component of Cosmic Rays in the 3-D Heliosphere’, Space Sci. Rev. 72, 419–430.

    Article  ADS  Google Scholar 

  • Klecker, B., McNab, M. C., Blake, J. B., Hamilton, D. C., Hovestadt, D., Kästle, H., Looper, M. D., Mason, G. M., Mazur, J. E., and Scholer, M.: 1995, ‘Charge State of Anomalous Cosmic-Ray Nitrogen, Oxygen, and Neon: SAMPEX Observations’, Astrophys. J. 442, L69–L72.

    Article  ADS  Google Scholar 

  • Klecker, B., Oetliker, M., Blake, J. B., Hovestadt, D., Mason, G. M., Mazur, J. E. and McNab, M. C.: 1997, ‘Multiply Charged Anomalous Cosmic Ray N, O, and Ne: Observations With HILT/SAMPEX’, Proc. 25th Int. Cosmic Ray Conf., Durban 2, 273–276.

    Google Scholar 

  • Leske, R. A., Mewaldt, R. A., Cummings, A. C., Cummings, J. R., Stone, E. C., and von Rosenvinge, T. T.: 1996a, ‘The Isotopic Composition of Anomalous Cosmic Rays from SAMPEX’, Space Sci. Rev. 78, 149–154.

    Article  ADS  Google Scholar 

  • Leske, R. A., Cummings, J. R., Mewaldt, R. A., Stone, E. C., and von Rosenvinge, T. T.: 1996b, ‘Measurements of the Ionic Charge States of Solar Energetic Particles at 15–70 MeV/nucleon Using the Geomagnetic Field’, AIP Conf. Proc. 374, 86–95.

    ADS  Google Scholar 

  • Leske, R. A., Mewaldt, R. A., Cummings, A. C., Stone, E. C., and von Rosenvinge, T. T.: 1997, ‘Updated Measurements of the Isotopic Composition of Interplanetary and Geomagnetically Trapped Anomalous Cosmic Rays’, Proc. 25th Int. Cosmic Ray Conf., Durban 2, 321–324.

    Google Scholar 

  • Luhn, A., Klecker, B., Hovestadt, D. and Möbius, E.: 1987, ‘The Mean Ionic Charge State of Silicon in 3He-rich Flares’, Astrophys. J. 317, 951–955.

    Article  ADS  Google Scholar 

  • Lukasiak, A., Ferrando, P., McDonald, F. B., and Webber, W. R.: 1994, ‘Cosmic-Ray Isotopic Composition of C, N, O, Ne, Mg, Si Nuclei in the Energy Range 50–200 MeV per Nucleon Measured by the Voyager Spacecraft During the Solar Minimum Period’, Astrophys. J. 426, 366–372.

    Article  ADS  Google Scholar 

  • Mason, G. M., Mazur, J. E. and Hamilton, D. C.: 1994, ‘Heavy-Ion Isotopic Anomalies in 3He-Rich Solar Particle Events’, Astrophys. J. 425, 843–848.

    Article  ADS  Google Scholar 

  • Mewaldt, R. A. and Stone, E. C.: 1989, ‘Isotope Abundances of Solar Coronal Material Derived from Solar Energetic Particle Measurements’, Astrophys. J. 337, 959–963.

    Article  ADS  Google Scholar 

  • Mewaldt, R. A., Selesnick, R. S., Cummings, J. R., Stone, E. C., and von Rosenvinge, T. T.: 1996, ‘Evidence for Multiply-Charged Anomalous Cosmic Rays’, Astrophys. J. 466, L43–L46.

    Article  ADS  Google Scholar 

  • Mewaldt, R. A., Spalding, J. D., and Stone, E. C.: 1984a, ‘A High-Resolution Study of the Isotopes of Solar Flare Nuclei’, Astrophys. J. 280, 892–901.

    Article  ADS  Google Scholar 

  • Mewaldt, R. A., Spalding, J. D., and Stone, E. C.: 1984b, ‘The Isotopic Composition of the Anomalous Low-Energy Cosmic Rays’, Astrophys. J. 283, 450–456.

    Article  ADS  Google Scholar 

  • Meyer, J. P.: 1985, ‘Solar-Stellar Outer Atmospheres and Energetic Particles, and Galactic Cosmic Rays’, Astrophys. J. Suppl. 57, 173–204.

    Article  ADS  Google Scholar 

  • Milliken, B. Leske, R. A., and Wiedenbeck, M. E.: 1995, ‘Silicon Detector Studies with an Interferometric Thickness Mapper’, Proc. 24th Int. Cosmic Ray Conf., Rome 4, 1283–1286.

    Google Scholar 

  • Pesses, M. E., Jokipii, J. R., and Eichler, D.: 1981, ‘Cosmic Ray Drift, Shock Wave Acceleration, and the Anomalous Component of Cosmic Rays’, Astrophys. J. 246, L85–L89.

    Article  ADS  Google Scholar 

  • Podosek, F.: 1978, ‘Isotopic Structures in Solar System Materials’, Ann. Rev. Astron. Astrophys. 16, 293–334.

    Article  ADS  Google Scholar 

  • Prantzos, N., Arnould, M., and Arcoragi, J. P.: 1987, ‘Neutron-Capture Nucleosynthesis During Core Helium Burning in Massive Stars’, Astrophys. J. 315, 209–228.

    Article  ADS  Google Scholar 

  • Reames, D. V.: 1993, ‘Mean Element Abundances in Energetic Particles from Impulsive Flares’, Proc. 23rd Int. Cosmic Ray Conf., Calgary 3, 388–391.

    Google Scholar 

  • Reames, D. V.: 1995, ‘Solar Energetic Particles — A Paradigm Shift’, Rev. Geophys. Suppl. 33, 585–589.

    Article  ADS  Google Scholar 

  • Reames, D. V., Barbier, L. M., and von Rosenvinge, T. T.: 1997, ‘Wind/EPACT Observations of Anomalous Cosmic Rays’, Adv. Space Res. 19, 809–812.

    Article  ADS  Google Scholar 

  • Reames, D. V., Cane, H. V., and von Rosenvinge, T. T.: 1990, ‘Energetic Particle Abundances in Solar Electron Events’, Astrophys. J. 357, 259–270.

    Article  ADS  Google Scholar 

  • Selesnick, R. S., Cummings, A. C., Cummings, J. R., Leske, R. A., Mewaldt, R. A., Stone, E. C., and von Rosenvinge, T. T.: 1993, ‘Coronal Abundances of Neon and Magnesium Isotopes from Solar Energetic Particles’, Astrophys. J. 418, L45–L48.

    Article  ADS  Google Scholar 

  • Simpson, J. A.: 1995, ‘The Anomalous Nuclear Component in the Three-Dimensional Heliosphere’, Adv. Space Res. 16(9), 135–149.

    Article  ADS  Google Scholar 

  • Simpson, J. A., Wefel, J. P., and Zamow, R.: 1983, ‘Isotopic and Elemental Composition of Solar Energetic Particles’, Proc. 18th Int. Cosmic Ray Conf., Bangalore 10, 322–325.

    Google Scholar 

  • Stone, E. C.: 1973, ‘Cosmic Ray Isotopes’, Proc. 13th Int. Cosmic Ray Conf., Denver 5, 3615–3626.

    Google Scholar 

  • Stone, E. C. and Cummings, A. C.: 1997, ‘Evidence for Anomalous Cosmic Ray S, Si, and Fe in the Outer Heliosphere and for a Non-ACR Source of S at 1 AU’, Proc. 25th Int. Cosmic Ray Conf., Durban 2, 289–292.

    Google Scholar 

  • Stone, E. C., Burlaga, L. F., Cummings, A. C., Feldman, W. C., Frain, W. E., Geiss, J., Gloeckler, G., Gold, R., Hovestadt, D., Krimigis, S. M., Mason, G. M., McComas, D., Mewaldt, R. A., Simpson, J. A., von Rosenvinge, T. T., and Wiedenbeck, M. E.: 1989, ‘The Advanced Composition Explorer’, AIP Conf. Proc. 203, 48–58.

    Article  ADS  Google Scholar 

  • Stone, E. C., Frandsen, A. M., Mewaldt, R. A., Christian, E. R., Margolies, D., Ormes, J. F., and Snow, F.: 1998a, ‘The Advanced Composition Explorer’, Space Sci. Rev. 86, 1.

    Article  ADS  Google Scholar 

  • Stone, E. C., Cohen, C. M. S., Cook, W. R., Cummings, A. C., Gauld, B., Kecman, B., Leske, R. A., Mewaldt, R. A., Thayer, M. R., Dougherty, B. L., Grumm, R. L., Milliken, B. D., Radocinski, R. G., Wiedenbeck, M. E., Christian, E. R., Shuman, S., Trexel, H., von Rosenvinge, T. T., Binns, W. R., Crary, D. J., W.R., Dowkontt, P., Epstein, J., Hink, P. L., Klarmann, J., Lijowski, M., and Olevitch, M. A.: 1998b, ‘The Cosmic Ray Isotope Spectrometer for the Advanced Composition Explorer’, Space Sci. Rev. 86, 285.

    Article  ADS  Google Scholar 

  • Takashima, T., Doke, T., Hayashi, T., Kobayashi, M., Shirai, H., Takehana, N., Ehara, M., Yamada, Y., Yanagita, S., Hasebe, N., Kashiwagi, T., Kato, C., Munakata, K., Kohno, T., Kondoh, K., Murakami, H., Nakamoto, A., Yanagimachi, T., Reames, D. V., and von Rosenvinge, T. T.: 1997, ‘The First Observation of Sulfur in Anomalous Cosmic Rays by the Geotail and the Wind Spacecrafts’, Astrophys. J. 477, L111–L113.

    Article  ADS  Google Scholar 

  • Tosi, M.: 1982, ‘CNO Isotopes and Galactic Chemical Evolution’, Astrophys. J. 254, 699–707.

    Article  ADS  Google Scholar 

  • Wiedenbeck, M. E., Christian, E. R., Cook, W. R., Cummings, A. C., Dougherty, B. L., Leske, R. A., Mewaldt, R. A., Stone, E. C., and von Rosenvinge, T. T.: 1996, ‘Two-Dimensional Position-Sensitive Silicon Detectors for the ACE Solar Isotope Spectrometer’, SPIE Conf. Proc. 2806, 176–187.

    ADS  Google Scholar 

  • Wilson, T. L. and Rood, R. T.: 1994, ‘Abundances in the Interstellar Medium’, Ann. Rev. Astron. Astrophys. 32, 191–226.

    Article  ADS  Google Scholar 

  • Zwickl, R. D., Sahm, S., Barrett, B., Grubb, R., Detman, T., Raben, V., Smith, C. W., Riley, P., Gold, R., Mewaldt, R. A., and Maruyama, T.: 1998, ‘The NOAA Real-Time-Solar-Wind (RTSW) System Using ACE Data’, Space Sci. Rev. 86, 635.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, E., Cohen, C., Cook, W. et al. The Solar Isotope Spectrometer for the Advanced Composition Explorer. Space Science Reviews 86, 357–408 (1998). https://doi.org/10.1023/A:1005027929871

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005027929871

Keywords

Navigation