Skip to main content
Log in

Electrochemical investigation of the codeposition of SiC and SiO2 particles with nickel

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The use of electrochemical impedance spectroscopy (EIS) for the in situ control of the electrolytic codeposition of Ni/SiO2 and Ni/SiC was investigated. An attempt was made to clarify why silica particles hardly codeposit in comparison to silicon carbide particles. It was found that the presence of SiO2 and SiC particles influences the metal deposition process in different ways. SiC particles that are being embedded in the growing metal layer cause an apparent decrease in the electrode surface area, probably due to blocking off a part of the surface by partly engulfed particles. In the case of SiO2 particles, which embed in the metal matrix to a very limited extent, no blocking was observed. It was found that the presence of particles in the solution causes an apparent increase in the electrode surface area, probably due to increased surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Withers and E.F. Abrams, Plating 55 (1968) 605.

    Google Scholar 

  2. T.W. Tomaszewski, L.C. Tomaszewski and H. Brown, Plating 56 (1969) 1234.

    Google Scholar 

  3. C. Buelens, J. Fransaer, J.-P. Celis and J.R. Roos, Bull. Electrochem. 8 (1992) 371.

    Google Scholar 

  4. E.P. Rajiv and S.K. Seshadri, Bull. Electrochem. 8 (1992) 376.

    Google Scholar 

  5. R.S. Saifullin, ‘Electrochemical Composite Coatings’ (Khimiya, Moscow, 1972).

    Google Scholar 

  6. R.S. Saifullin, Zh. Prikl. Khimi 39 (1966) 810.

    Google Scholar 

  7. K. Helle, Proceedings 4th International Conferenc on ‘Org. Coating Sci. and Technol.’ 2 (1982) p. 264.

    Google Scholar 

  8. A. Hovestad and L.J.J. Janssen, J. Appl. Electrochem. 25 (1995) 519.

    Google Scholar 

  9. W. Metzger, R. Ott, G. Laux and H. Harst, Galvanotechnik 61 (1970) 998.

    Google Scholar 

  10. J.C. Withers, Prod. Fin. 8 (1962).

  11. P.W. Martin, Met. Finish. J. 11 (1965) 399.

    Google Scholar 

  12. D.W. Snaith and P.D. Groves, Trans. Inst. Metal. Finish. 50 (1972) 95.

    Google Scholar 

  13. T.W. Tomaszewski, Trans. Inst. Met. Finish. 54 (1976) 45.

    Google Scholar 

  14. N. Guglielmi, J. Electrochem. Soc. 119 (1972) 1009.

    Google Scholar 

  15. J. Foster and A.M.J. Kariapper, Trans. Inst. Met. Finish. 51 (1973) 27.

    Google Scholar 

  16. J.M. Sykes and D.A. Alnert, Trans. Inst. Met. Finish. 51 (1973) 171.

    Google Scholar 

  17. A.M.J. Kariapper and J. Foster, Trans. Inst. Met. Finish. 52 (1974) 87.

    Google Scholar 

  18. M.J. Bhagwat, J.-P. Celis and J.R. Roos, Trans. Inst. Met. Finish. 61 (1983) 72.

    Google Scholar 

  19. R.S. Saifullin, R.N. Salakhiev and R.S. Kuramshin, Kolloidn. Zh. 50 (1988) 293.

    Google Scholar 

  20. B. Szczygiel, Trans. Inst. Met. Finish. 73 (1995) 142.

    Google Scholar 

  21. J.-P. Celis, J.R. Roos and C. Buelens, J. Electrochem. Soc. 134 (1987) 1402.

    Google Scholar 

  22. J. Fransaer, J.-P. Celis and J.R. Roos, J. Electrochem. Soc. 139 (1992) 413.

    Google Scholar 

  23. V.E. Shubin and P. Kékicheff, J. Colloid. Interface Sci. 155 (1993) 108.

    Google Scholar 

  24. S.W. Watson and R.P. Walters, J. Electrochem. Soc. 138 (1991) 3633.

    Google Scholar 

  25. S.W. Watson, J. Electrochem. Soc. 140 (1993) 2235.

    Google Scholar 

  26. S.H. Yeh and C.C. Wan, J. Appl. Electrochem. 24 (1994) 993.

    Google Scholar 

  27. A.J. Arvia and D. Posadas, in ‘Encyclopedia of Electrochemistry of the Elements’, edited by A.J. Bard, Vol. 3 (Marcel Dekker, New York, 1975).

    Google Scholar 

  28. I. Epelboin, M. Joussellin and R. Wiart, J. Electroanal. Chem. 119 (1981) 61.

    Google Scholar 

  29. E. Chassaing, K. Vu Quang and R. Wiart, J. Appl. Electrochem. 17 (1987) 1267 and 19 (1989) 839.

    Google Scholar 

  30. E. Chassaing and R. Wiart, J. Electrochem. Soc. 118 (1971) 1577.

    Google Scholar 

  31. O. Volk and H. Fisher, Electrochim. Acta 4 (1961) 251.

    Google Scholar 

  32. S.S. Krugliakov, N.T. Kudryavtsev and R.P. Sobolev, Electrochim. Acta 12 (1967) 1263.

    Google Scholar 

  33. L. Benea and G. Carac, Cercet. Metal. Noi. Mater. 5 (1997) 20.

    Google Scholar 

  34. G. Maurin and A. Lavanant, J. Appl. Electrochem. 25 (1995) 1113.

    Google Scholar 

  35. B. Szeptycka, Inz. Powierzchni 4 (1997) 45.

    Google Scholar 

  36. M. Kimoto, A. Yakawa, T. Tsuda and R. Kammel, Metall. 44 (1990) 1148.

    Google Scholar 

  37. M. Ramasubramanian, S.N. Popova, B.N. Popov, R.E. White and K.-M. Yin, J. Electrochem. Soc. 143 (1996) 2164.

    Google Scholar 

  38. R.S. Saifullin, R.E. Fomina and A.R. Saifullin, Zashch. Met. 4 (1986) 611.

    Google Scholar 

  39. D. Aslanidis, J. Fransaer and J.-P. Celis, J. Electrochem. Soc. 144 (1997) 2352.

    Google Scholar 

  40. Y. Shiohara, A. Okado, M. Abe and M. Sagiyama, Tetsu-to-Hagane 77 (1991) 878.

    Google Scholar 

  41. C. Dedeloudis, M.K. Kaisheva, N. Muleshkov, T. Muleshkov, P. Nowak, J. Fransaer and J.P. Celis, Plat. Surf. Finish., 86(8) (1999) 57.

    Google Scholar 

  42. J. Newman, J. Electrochem. Soc. 113 (1966) 501.

    Google Scholar 

  43. Chu-nan Cao, Electrochim. Acta 35 (1990) 831 and 35 (1990) 837.

    Google Scholar 

  44. L. Nyikos and T. Pajkossy, Electrochim. Acta 30 (1985) 1553.

    Google Scholar 

  45. G.J. Brug, A.L.G. Van den Eeden, M. Sluyters-Rehbach and J.H. Sluyters, J. Electroanal. Chem. 176 (1984) 275.

    Google Scholar 

  46. CERN Computer Centre Program Library, D506.

  47. G.N.K. Ramesh Babu, V.S. Muralidharan and F. Rodriguez-Reinoso, Plat. Surf. Finish. 78 (1991) 126.

    Google Scholar 

  48. T. Pajkossy, J. Electroanal. Chem. 364 (1994) 111.

    Google Scholar 

  49. J. Newman, J. Electrochem. Soc. 117 (1970) 198.

    Google Scholar 

  50. M.A. Vorotyntsev, in ‘Modern Aspects of Electrochemistry’ Vol. 17, edited by, B.E. Conway, R.E. White and J.O'M. Bockris (Plenum, New York, 1986), p. 131.

    Google Scholar 

  51. G.A. Parks, Chem. Rev. 65 (1965) 177.

    Google Scholar 

  52. J. Drzymaøa, Int. J. Mineral Process. 42 (1994) 139 and 42 (1994) 153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, P., Socha, R., Kaisheva, M. et al. Electrochemical investigation of the codeposition of SiC and SiO2 particles with nickel. Journal of Applied Electrochemistry 30, 429–437 (2000). https://doi.org/10.1023/A:1003979117146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003979117146

Navigation