Skip to main content
Log in

Wavefunction Collapse and Conservation Laws

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

It is emphasized that the collapse postulate of standard quantum theory can violate conservation of energy-momentum and there is no indication from where the energy-momentum comes or to where it goes. Likewise, in the Continuous Spontaneous Localization (CSL) dynamical collapse model, particles gain energy on average. In CSL, the usual Schrödinger dynamics is altered so that a randomly fluctuating classical field interacts with quantized particles to cause wavefunction collapse. In this paper it is shown how to define energy for the classical field so that the average value of the energy of the field plus the quantum system is conserved for the ensemble of collapsing wavefunctions. While conservation of just the first moment of energy is, of course, much less than complete conservation of energy, this does support the idea that the field could provide the conservation law balance when events occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Pearle, New Techniques in Quantum Measurement Theory, D. M. Greenberger, ed. (New York Acadamy of Science, New York, 1986), p. 539.

    Google Scholar 

  2. L. Vaidman (private communication) and L. Goldenberg (M.Sc. thesis, Tel-Aviv University, 1995), in a similar discussion of conservation of the mean value of the energy, conclude that certain measurements, assumed to be energy conserving, cannot be perfect (i.e., error free). The present argument goes further, in showing that even certain imperfect measurements cannot be energy conserving. I would like to thank Lev Vaidman for bringing this work to my attention.

  3. D. Bohm and J. Bub, Revs. Mod. Phys. 38, 453 (1966).

    Google Scholar 

  4. P. Pearle, Phys. Rev. D 13, 857 (1976); Int'l. J. Theor. Phys. 48, 489 (1979); Found. Phys. 12, 249 (1982); in Quantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Clarendon, Oxford, 1986), p. 84.

    Google Scholar 

  5. P. Pearle, The Wave-Particle Dualism, S. Diner et al., eds. (Reidel, Dordrecht, 1984).

    Google Scholar 

  6. P. Pearle, Phys. Rev. A 39, 2277 (1989).

    Google Scholar 

  7. G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470 (1986); Phys. Rev. D 36, 3287 (1987); Found. Phys. 18, 1 (1988).

    Google Scholar 

  8. G. C. Ghirardi and A. Rimini, Sixty-Two Years of Uncertainty, A. Miller, ed. (Plenum, New York, 1990), p. 167.

    Google Scholar 

  9. G. C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A 42, 78 (1990).

    Google Scholar 

  10. G. C. Ghirardi and P. Pearle, PSA 1990, Vol. 2, A. Fine, M. Forbes, and L. Wessels, eds. (Philosophy of Science Association, Michigan, 1990) pp. 19, 35.

    Google Scholar 

  11. P. Pearle, Open Systems and Measurement in Relativistic Quantum Theory, H. P. Breuer and F. Petruccione, eds. (Springer, Heidelberg, Germany, 1999), p. 195.

    Google Scholar 

  12. P. Pearle and E. Squires, Phys. Rev. Lett. 73, 1 (1994).

    Google Scholar 

  13. B. Collett, P. Pearle, F. Avignone, and S. Nussinov, Found. Phys. 25, 1399 (1995).

    Google Scholar 

  14. P. Pearle, J. Ring, J. I. Collar, and F. T. Avignone III, Found. Phys. 29, 465 (1999).

    Google Scholar 

  15. P. Pearle, Phys. Rev. D 29, 235 (1984); A. Zeilinger, Quantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Clarendon, Oxford, 1986); A. Zeilinger, R. Gaehler, C. G. Shull, W. Treimer, and W. Mampe, Revs. Mod. Phys. 60, 1067 (1988).

    Google Scholar 

  16. A. J. Leggett, Found Phys. 29, 445 (1999).

    Google Scholar 

  17. J. R. Clauser, Experimental Metaphysics, R. S. Cohen, M. Horne, and J. Stachel, eds. (Kluwer Academic, Dordrecht, 1997), p. 1.

    Google Scholar 

  18. F. Karolyhazy, Nuovo Cimento A 42, 1506 (1966). F. Karolyhazy, A Frenkel, and B. Lukacs, Physics as Natural Philosophy, A. Shimony and H. Feshbach, eds. (M.I.T. 1159 Wavefunction Collapse and Conservation Laws Press, Cambridge, 1982), p. 204; Quantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Clarendon, Oxford, 1986), p. 109; A. Frenkel, Found. Phys. 20, 159 (1990).

    Google Scholar 

  19. R. Penrose, Quantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Clarendon, Oxford, 1986), p. 129; The Emperor's New Mind (Oxford University Press, Oxford, 1992); Shadows of the Mind (Oxford University Press, Oxford, 1994); Gen. Rel. and Grav. 28, 581 (1996).

    Google Scholar 

  20. L. Diosi, Phys. Rev. A 40, 1165 (1989).

    Google Scholar 

  21. G. C. Ghirardi, R. Grassi, and A. Rimini, Phys. Rev. A 42, 1057 (1990).

    Google Scholar 

  22. P. Pearle and E. Squires, Found. Phys. 26, 291 (1996).

    Google Scholar 

  23. L. E. Ballentine, Phys. Rev. A 43, 9 (1991).

    Google Scholar 

  24. J. Anandan, Found. Phys. 29, 1647 (1999).

    Google Scholar 

  25. D. Bedford and D. Wang, Nuovo Cim. B 26, 313 (1975); B 37, 55 (1977).

    Google Scholar 

  26. I. C. Percival, Proc. Roy. Soc. A 451, 503 (1995).

    Google Scholar 

  27. L. P. Hughston, Proc. Roy. Soc. A 452, 953 (1995).

    Google Scholar 

  28. L. Diosi, Phys. Lett. A 129, 419 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearle, P. Wavefunction Collapse and Conservation Laws. Foundations of Physics 30, 1145–1160 (2000). https://doi.org/10.1023/A:1003677103804

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003677103804

Keywords

Navigation