Skip to main content
Log in

Relationships between bacterial productivity and organic carbon at a soil—stream interface

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Microbial communities at soil-stream interfaces may be particularly important in regulating amounts and forms of nutrients that leave upland soils and enter stream ecosystems. While microbial communities are thought to be responsible for key nutrient transformations within near-stream sediments, there is relatively little mechanistic information on factors that control microbial activities in these areas. In this study, we examine the roles of dissolved organic carbon (DOC) vs. particulate organic carbon (POC) as potential controls on rates of bacterial productivity (measured as incorporation of [3H]thymidine into bacterial DNA) and amounts of bacterial biomass (measured as fatty acid yield) in sediments along a transect perpendicular to a soil–stream interface. We hypothesized that spatial patterns in bacterial productivity would vary in response to strong and persistent patterns in pore-water concentrations of DOC that were observed along a soil-stream transect throughout a 2-year period. Our results did not support the existence of such a link between pore-water DOC and bacterial productivity. In contrast, we found bacterial productivity and biomass were related to small-scale spatial variations in sediment POC on 3 of 4 sample dates. While our results indicate that total bacterial productivity in near-stream sediments is not consistently linked to spatial variations in pore-water DOC, it is likely that DOC and POC are not mutually exclusive and the relative contribution of DOC and POC to sedimentary microbes varies temporally and spatially in different riparian habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bird, D. F. & C. M. Duarte, 1989. Bacteria-organic matter relationship in sediments: a case of spurious correlation. Can. J. Fish. aquati. Sci. 46: 904–908.

    Google Scholar 

  • Chrzanowski, T. H., K. Simek, R. H. Sada & S. Williams, 1993. Estimates of bacterial growth rate constants from thymidine incorporation and variable conversion factors. Microb. Ecol. 25: 121–130.

    Article  CAS  Google Scholar 

  • Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and salt water ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43: 1–10.

    Google Scholar 

  • Dobbs, F. C. & R. H. Findlay, 1993. Analysis of microbial lipids to determine biomass and detect the response of sedimentary microorganisms to disturbance. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers: 347–358.

  • Dosskey, M. G. & P. M. Bertsch, 1994. Forest sources and pathways of organic matter transport to a blackwater stream: a hydrologic approach. Biogeochemistry 24: 1–19.

    Article  CAS  Google Scholar 

  • Fallon, R. D. & C. W. Boylen, 1990. Bacterial production in freshwater sediments: cell specific versus system measurements. Microb. Ecol. 19: 53–62.

    Article  Google Scholar 

  • Fiebig, D., 1997. Microbiological turnover of amino acids immobilized from groundwater discharged through hyporheic sediments. Limnol. Oceanogr. 42: 763–768.

    CAS  Google Scholar 

  • Fiebig, D. & J. Marxsen, 1992. Immobilization and mineralization of dissolved free amino acids by stream-bed biofilms. Freshwat. Biol. 28: 129–140.

    Article  CAS  Google Scholar 

  • Findlay, S., 1993. Thymidine incorporation into DNA as an estimate of sediment bacterial production. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers: 505–508.

  • Findlay, S. E. G., J. L. Meyer & R. T. Edwards, 1984. Measuring bacterial production via rate of incorporation of [3H]thymidine into DNA J. Microbiol. Meth. 2: 57–72.

    Article  CAS  Google Scholar 

  • Findlay, S. & W. V. Sobczak, 1996. Variability in removal of dissolved organic carbon in hyporheic sediments. J. n. am. Benthol. Soc. 15: 35–41.

    Article  Google Scholar 

  • Findlay, S., D. Strayer, C. Goumbala & K. Gould, 1993. Metabolism of streamwater dissolved organic carbon in the shallow hyporheic zone. Limnol. Oceanogr. 38: 1493–1499.

    Article  CAS  Google Scholar 

  • Fischer, H., M. Pusch & J. Schwoerbel, 1996. Spatial distribution and respiration of bacteria in stream-bed sediments. Arch. Hydrobiol. 137: 281–300.

    Google Scholar 

  • Groffman, P. M., A. J. Gold & R. C. Simmons, 1992. Nitrate dynamics in riparian forests: microbial studies. J. envir. Qual. 21: 666–671.

    Article  Google Scholar 

  • Haack, S. K., T. M. Burton & K. Ulrich, 1988. Effects of whole-tree harvest on epilithic bacterial populations in headwater streams. Microb. Ecol. 16: 165–181.

    Article  Google Scholar 

  • Haack, S. K., H. Garchow, D. A. Odelson, L.J. Forney & M. J. Klug, 1994. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl. envir. Microbiol. 60: 2483–2493.

    CAS  Google Scholar 

  • Hanson, G. C., P. M. Groffman & A. J. Gold, 1994. Symptoms of nitrogen saturation in a riparian wetland. Ecol. Applic. 4: 750–756.

    Article  Google Scholar 

  • Hedin, L. O., 1990. Factors controlling sediment community respiration in woodland stream ecosystems. Oikos 57: 94–105.

    Google Scholar 

  • Hedin, L. O. & M. B. Brown, 1994. Watershed-level coupling of nitrogen and sulfur in a heterogeneous landscape. Verh. int. Ver. Limnol. 25: 1477–1482.

    CAS  Google Scholar 

  • Hedin, L. O., J. C. von Fischer, N. E. Ostrom, B. P. Kennedy, M. G. Brown & G. P. Robertson, 1998. Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfaces. Ecology 79: 684–703.

    Article  Google Scholar 

  • Hendricks, S. P., 1996. Bacterial biomass, activity, and production within the hyporheic zone of a north-temperate stream. Arch. Hydrobiol. 136: 467–487.

    Google Scholar 

  • Jones, J. B., Jr., S. G. Fisher & N. B. Grimm, 1995. Vertical hydrologic exchange and ecosystem metabolism in a Sonoran Desert stream. Ecology 76: 942–952.

    Article  Google Scholar 

  • Kaplan, L. A. & J. D. Newbold, 1993. Biogeochemistry of dissolved organic carbon entering streams. In T. E. Ford (ed.), Aquatic Microbiology: an Ecological Approach. Blackwell Scientific Publications: 139–166.

  • Kaplan, L. A., T. L. Bott & J. K. Bielicki, 1992. Assessment of [3H]thymidine incorporation into DNA as a method to determine bacterial productivity in stream bed sediments. Appl. envir. Microbiol. 58: 3614–3621.

    CAS  Google Scholar 

  • Likens, G. E., 1984. Beyond the shoreline: a watershed-ecosystem approach. Verh. int. Ver. Limnol. 22: 1–22.

    CAS  Google Scholar 

  • Marxsen, J., 1996. Measurement of bacterial production in streambed sediments via leucine incorporation. FEMS Microb. Ecol. 21: 313–325.

    Article  CAS  Google Scholar 

  • McClain, M. E., J. E. Richey & T. P. Pimentel, 1994. Groundwater nitrogen dynamics at the terrestrial-lotic interface of a small catchment in the Central Amazon Basin. Biogeochemistry 27: 113–127.

    Article  CAS  Google Scholar 

  • McDowell, W. H., 1985. Kinetics and mechanisms of dissolved organic carbon retention in a headwater stream. Biogeochemistry 1: 329–352.

    Article  CAS  Google Scholar 

  • McDowell, W. H. & G. E. Likens, 1988. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol. Monogr. 58: 177–195.

    Article  Google Scholar 

  • McKnight, D. M., K. E. Bencala, G. W. Zellweger, G. R. Aiken, G. L. Feder & K. A. Thorn, 1992. Sorption of dissolved organic carbon by hydrous aluminum andiron oxides occurring at the confluence of deer creek with the Snake River, Summit County, Colorado. Envir. Sci. Technol. 26: 1388–1396.

    Article  CAS  Google Scholar 

  • Metzler, G. M. & L. A. Smock, 1990. Storage and dynamics of subsurface detritus in a sand-bottomed stream. Can. J. Fish. aquat. Sci. 47: 588–594.

    Article  Google Scholar 

  • Moriarty, D., 1986. Measurement of bacterial growth rates in aquatic systems from rates of nucleic acid synthesis. In K. C. Marshall (ed.), Advances in Microbial Ecology, Vol. 9. Plenum Press: 245.

  • Moriarty, D. & P. Pollard, 1981. DNA synthesis as a measure of bacterial productivity in seagrass sediments. Mar. Ecol. Prog. Ser. 5: 151–156.

    Google Scholar 

  • Pollard, P. C. & D. Moriarty, 1984. Validity of the tritiated thymidine method for estimating bacterial growth rates: measurement of isotope dilution during DNA synthesis. Appl. envir. Microbiol. 48: 1076–1083.

    CAS  Google Scholar 

  • Pusch, M., 1996. The metabolism of organic matter in the hyporheic zone of a mountain stream, and its spatial distribution. Hydrobiologia 323: 107–118.

    Google Scholar 

  • Pusch, M. & J. Schwoerbel, 1994. Community respiration in hyporheic sediments of a mountain stream (Steina, Black Forest). Arch. Hydrobiol. 130: 35–52.

    Google Scholar 

  • Sander, B. C. & J. Kalff, 1993. Factors controlling bacterial production in marine and freshwater sediments. Microb. Ecol. 26: 79–99.

    Article  Google Scholar 

  • Simon, M. & F. Azam, 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201–213.

    CAS  Google Scholar 

  • Thurman, E. M., 1985. Organic geochemistry of natural waters. Martinus Nijhoff/Dr W. Junk Publishers, The Hague.

    Google Scholar 

  • Vervier, P., M. Dobson & G. Pinay, 1993. Role of interaction zones between surface and ground waters in DOC transport and processing: considerations for river restoration. Freshwat. Biol. 29: 275–284.

    Article  Google Scholar 

  • Vestal, J. R. & D. C. White, 1989. Lipid analysis in microbial ecology. BioScience 39: 535–541.

    Article  PubMed  CAS  Google Scholar 

  • Wetzel, R. G. & B. A. Manny, 1977. Seasonal changes in particulate and dissolved organic carbon and nitrogen in a hardwater stream. Arch. Hydrobiol. 80: 20–39.

    CAS  Google Scholar 

  • Wetzel, R. G., 1990. Land-water interfaces: metabolic and limnological regulators. Verh.int. Ver. Limnol. 24: 6–24.

    Google Scholar 

  • White, P. A., J. Kalff, J. B. Rasmussen & J. M. Gasol, 1991. The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microb. Ecol. 21: 99–118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William V. Sobczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobczak, W.V., Hedin, L.O. & Klug, M.J. Relationships between bacterial productivity and organic carbon at a soil—stream interface. Hydrobiologia 386, 45–53 (1998). https://doi.org/10.1023/A:1003583813445

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003583813445

Navigation