Skip to main content
Log in

Role of Pressure in Turbulence

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

There is very limited knowledge of the kinematical relations for the velocity structure functions higher than three. Instead, the dynamical equations for the structure functions of the velocity increment are obtained from the Navier–Stokes equation under the assumption of the local homogeneity and isotropy. These equations contain the correlation between the velocity and pressure gradient increments, which is very difficult to know theoretically and experimentally. We have examined these dynamical relations by using direct numerical simulation data at very high resolution at large Reynolds numbers, and found that the contribution of the pressure term is important to the dynamics of the longitudinal velocity with large amplitudes. The pressure term is examined from the view point of the conditional average and the role of the pressure term in the turbulence dynamics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30:9(1941).

    Google Scholar 

  2. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, Vol. II (MIT press, Cambridge, 1975).

    Google Scholar 

  3. V. S. L'vov, E. Podivilov, and I. Procaccia, Phys. Rev. Lett. 79:2050(1997).

    Google Scholar 

  4. G. He, S. Chen, R. H. Kraichnan, R. Zhang, and Y. Zhou, Phys. Rev. Lett. 81:4636(1998).

    Google Scholar 

  5. B. Dhruva, Y. Tsuji, and K. R. Sreenivasan, Phys. Rev. E 56:R4948(1997).

    Google Scholar 

  6. W. Van de Water and J. A. Herweijer, J. Fluid Mech. 387:3(1999).

    Google Scholar 

  7. G. He, G. D. Doolen, and S. Chen, Phys. Fluids 11:3743(2001).

    Google Scholar 

  8. M. Nelkin, Phys. Fluids 11:2202(1999).

    Google Scholar 

  9. X. Shen and Z. Warhaft, Phys. Fluids 14:370(2002).

    Google Scholar 

  10. E. Lindborg, J. Fluid Mech. 326:343(1996).

    Google Scholar 

  11. R. J. Hill, J. Fluid Mech. 353:67(1997).

    Google Scholar 

  12. R. H. Kraichnan, Phys. Rev. Lett. 65:575(1990).

    Google Scholar 

  13. T. Gotoh and R. H. Kraichnan, Phys. Fluids A 5:445(1993).

    Google Scholar 

  14. D. Fukayama, T. Oyamada, T. Nakano, T. Gotoh, and K. Yamamoto, J. Phys. Soc. Jpn. 69:701(2000).

    Google Scholar 

  15. A. M. Polyakov, Phys. Rev. E 52:6183(1995).

    Google Scholar 

  16. V. Yakhot, Phys. Rev. E 55:329(1997).

    Google Scholar 

  17. V. Yakhot, Phys. Rev. E 57:1737(1998).

    Google Scholar 

  18. V. Yakhot, Phys. Rev. E 63:026307(2001).

    Google Scholar 

  19. R. J. Hill and O. N. Boratav, Phys. Fluids 13:276(2001).

    Google Scholar 

  20. R. J. Hill, J. Fluid Mech. 434:379(2001).

    Google Scholar 

  21. T. Gotoh, ITP lecture notes of program on hydrodynamic turbulence (2000).

  22. T. Gotoh and D. Fukayama, Phys. Rev. Lett. 86:3775(2001).

    Google Scholar 

  23. G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967).

    Google Scholar 

  24. S. Kurien and K. R. Sreenivasan, Phys. Rev. E 64:056302(2001)

    Google Scholar 

  25. G. Boffeta, M. Cencini, and J. Davoudi, Phys. Rev. E 66:017301(2002)

    Google Scholar 

  26. T. Gotoh, D. Fukayama, and T. Nakano, Phys. Fluids 14:1065(2002).

    Google Scholar 

  27. G. A. Voth, A. La Porta, A. M. Crawford, J. Alexander, and E. Bordenshatz, J. Fluid Mech. 469:121(2002).

    Google Scholar 

  28. T. Gotoh and R. S. Rogallo, J. Fluid Mech. 396:257(1999).

    Google Scholar 

  29. R. H. Kraichnan, Proc. R. Soc. Lond. A 434:65(1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotoh, T., Nakano, T. Role of Pressure in Turbulence. Journal of Statistical Physics 113, 855–874 (2003). https://doi.org/10.1023/A:1027316804161

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027316804161

Navigation