Skip to main content
Log in

Lagrangian Particle Approach to Large Eddy Simulations of Hydrodynamic Turbulence

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The flux of energy from large to small scales in hydrodynamic turbulence controls the dissipation of energy at a given scale in the fluid. An accurate parametrization of this flux is a prerequisite in order to devise reliable methods to simulate turbulent flows without resolving all the scales of motion. This problem is discussed in the context of a particle method based on the Smooth Particles Hydrodynamics algorithm. Motivated by the von Karman–Howarth–Kolmogorov exact relation for the energy flux, and by Lagrangian dynamics considerations we postulate an energy transfer term which is quadratic in the velocity and formally time reversal invariant. The numerical simulation of the model however is observed to spontaneously break the time reversal symmetry, demonstrating that the proposed term acts on average as the desired eddy damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30:299(1941).

    Google Scholar 

  2. U. Frisch, Turbulence: The Legacy of AN Kolmogorov (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  3. C. Meneveau and J. Katz, Annu. Rev. Fluid Mech. 32:1(2000).

    Google Scholar 

  4. J. R. Mansfield, O. M. Knio, and C. Meneveau, J. Comp. Phys. 145:693(1998).

    Google Scholar 

  5. B. I. Shraiman and E. D. Siggia, Nature 405:639(2000).

    Google Scholar 

  6. G. Falkovich, K. Gawedzki, and M. Vergassola, Rev. Modern Phys. 73:913(2001).

    Google Scholar 

  7. M. Chertkov, A. Pumir, and B. I. Shraiman, Phys. Fluids 11:2394(1999).

    Google Scholar 

  8. A. Pumir, B. I. Shraiman, and M. Chertkov, Europhys. Lett. 56:379(2001).

    Google Scholar 

  9. F. van der Bos, B. Tao, C. Meneveau, and J. Katz, Phys. Fluids 14:2457(2002).

    Google Scholar 

  10. U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett. 56:1505(1986).

    Google Scholar 

  11. D. Rothman and S. Zaleski, Lattice Gas Cellular Automata (Cambridge University Press, 1997).

  12. J. J. Monaghan, Annu. Rev. Astron. Astr. 30:543(1992).

    Google Scholar 

  13. J. J. Monaghan, (2001).

  14. J. P. Morris, P. J. Fox, and Y. Zhu, J. Comp. Phys. 136:214(1997).

    Google Scholar 

  15. J. P. Morris, Analysis of SPH with applications, Ph.D. thesis (Applied Mathematics Dept., Monash University, Australia, 1996).

    Google Scholar 

  16. K. R. Sreenivasan, Phys. Fluids 10:528(1997).

    Google Scholar 

  17. G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74:2692(1995).

    Google Scholar 

  18. G. Gallavotti, J. Stat. Phys. 86:907(1997).

    Google Scholar 

  19. S. Aumaitre, S. Fauve, S. McNamara, and P. Poggi, Eur. Phys. J. B 19:449(2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pumir, A., Shraiman, B.I. Lagrangian Particle Approach to Large Eddy Simulations of Hydrodynamic Turbulence. Journal of Statistical Physics 113, 693–700 (2003). https://doi.org/10.1023/A:1027300400526

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027300400526

Navigation