Skip to main content
Log in

Most Probable Histories for Nonlinear Dynamics: Tracking Climate Transitions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The effective action provides an appropriate cost function to determine most probable (or optimal) histories for nonlinear dynamics with strong noise. In such strong-coupling problems, a nonperturbative technique is required to calculate the effective action. We have proposed a Rayleigh–Ritz variational approximation, which employs simple moment-closures or intuitive guesses of the statistics to calculate the effective action. We consider here an application to climate dynamics, within a simple “bimodal” Langevin model similar to that proposed by C. Nicolis and G. Nicolis [Tellus 33:225 (1981)]. Capturing climate state transitions even in this simple model is known to present a serious problem for standard methods of data assimilation. In contrast, it is shown that the effective action for the climate history is already well-approximated by a one-moment closure and that the optimal, minimizing history robustly tracks climate change, even with large observation errors. Furthermore, the Hessian of the effective action provides the ensemble variance as a realistic measure of confidence level in the predicted optimal history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Onsager, Reciprocal relations in irreversible processes, I, II, Phys. Rev. 37:405–426, 2265–2279 (1931).

    Google Scholar 

  2. L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91: 1505–1512 (1953).

    Google Scholar 

  3. M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems (Springer, New York, 1984).

    Google Scholar 

  4. R. Graham, Onset of cooperative behavior in nonequilibrium steady states, in Order and Fluctuations in Equilibrium and Nonequilibrium Statistical Mechanics, G. Nicolis, G. Dewel, and J. W. Turner, eds. (Wiley, New York, 1981).

    Google Scholar 

  5. R. Maier and D. Stein, A scaling theory of bifurcations in the symmetric weak-noise escape problem, J. Stat. Phys. 83:291–357 (1996).

    Google Scholar 

  6. C. Nicolis and G. Nicolis, Stochastic aspects of climatic transitions—additive fluctuations, Tellus 33:225–234 (1981).

    Google Scholar 

  7. R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, Stochastic resonance in climatic change, Tellus 34:10–16 (1982).

    Google Scholar 

  8. R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, A theory of stochastic resonance in climatic change, SIAM J. Appl. Math. 43:565–578 (1983).

    Google Scholar 

  9. A. Sutera, Stochatic perturbation of a pure convective motion, J. Atmos. Sci. 37:246–249 (1980).

    Google Scholar 

  10. A. Sutera, On stochastic perturbation and long-term climate behavior, Quart. J. Roy. Meteorol. Soc. 107:137–152 (1981).

    Google Scholar 

  11. R. N. Miller, M. Ghil, and V. Gauthiez, Advanced data assimilation in strongly nonlinear dynamical systems, J. Atmos. Sci. 51:1037–1056 (1994).

    Google Scholar 

  12. M. Ghil and P. Malanotte-Rizzoli, Data assimilation in meteorology and oceanography, Adv. in Geophys. 33:141–266 (1991).

    Google Scholar 

  13. O. Talagrand, Assimilation of observations, an introduction, J. Met. Soc. Jap. 75:191–209 (1997).

    Google Scholar 

  14. A. H. Jazwinski, Stochastic Processes and Filtering Theory (Academic Press, New York, 1970).

    Google Scholar 

  15. Y. Steinberg, B. Z. Bobrovsky, and Z. Schuss, Fixed-point smoothing of scalar diffusions, I: An asymptotically optimal smoother, SIAM J. Appl. Math. 54:833–853 (1994).

    Google Scholar 

  16. G. L. Eyink, A variational formulation of optimal nonlinear estimation, preprint.

  17. G. L. Eyink and J. Restrepo, Optimal variational assimilation in strongly nonlinear dynamical systems, to be submitted to J. Atmos. Sci.

  18. E. N. Lorenz, Deterministic non-periodic flow, J. Atmos. Sci. 20:130–141 (1963).

    Google Scholar 

  19. H. J. Kushner, Dynamical equations for optimal nonlinear filtering, J. Diff. Eq. 3:179–190 (1967).

    Google Scholar 

  20. E. Pardoux, Non-linear filtering, prediction and smoothing, in Stochastc Systems: The Mathematics of Filtering and Identification and Applications, M. Hazelwinkel and J. C. Willems (D. Reidel Publishing, Dordrecht, 1981).

    Google Scholar 

  21. G. L. Eyink, Action principle in nonequilibrium statistical dynamics, Phys. Rev. E 54:3419–3435 (1996).

    Google Scholar 

  22. G. L. Eyink, Linear stochastic models of nonlinear dynamical systems, Phys. Rev. E 58:6975–6991 (1998).

    Google Scholar 

  23. G. L. Eyink, Action principle in statistical dynamics, Prog. Theor. Phys. Suppl. 130:77–86 (1998).

    Google Scholar 

  24. G. L. Eyink, Fluctuation-response relations for multi-time correlations, to appear in Phys. Rev. E 62:210–220 (2000).

    Google Scholar 

  25. H. Cramér, Sur un noveau theorème-limite de la théorie des probabilitiés, Actualités Scientifiques et Industrialles 736:5–23 (1938).

    Google Scholar 

  26. U. Frisch, Turbulence. The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  27. G. L. Eyink and A. Wray, Evaluation of the statistical Rayleigh Ritz method in isotropic turbulence decay, in Proceedings of the 1998 CTR Summer Program (Center for Turbulence Research, NASA Ames & Stanford University, 1998). Available at: http://ctr. stanford.edu/SP98.html.

  28. C. Nicolis and G. Nicolis, Closing the hierarchy of moment equations in nonlinear dynamical systems, Phys. Rev. E 58:4391–4400 (1998).

    Google Scholar 

  29. K. E. Kürten and G. Nicolis, Moment equations and closure schemes in chaotic dynamics, J. Phys. A: Math. Gen. 31:7331–7340 (1998).

    Google Scholar 

  30. P. J. van Leeuwen and G. Evensen, Data assimilation and inverse methods in terms of a probabilistic formulation, Mon. Wea. Rev. 124:2898–2912 (1996).

    Google Scholar 

  31. G. Evensen, Advanced data assimilation for strongly nonlinear dynamics, Mon. Wea. Rev. 125:1342–1354 (1996).

    Google Scholar 

  32. G. Burgers, P. J. van Leeuwen, and G. Evensen, Analysis scheme in the ensemble Kalman filter, Mon. Wea. Rev. 126:1719–1724 (1998).

    Google Scholar 

  33. H. J. Kushner, Approximations to optimal nonlinear filters, IEEE Trans. Auto. Cont. AC-12:546–556 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyink, G.L., Restrepo, J.M. Most Probable Histories for Nonlinear Dynamics: Tracking Climate Transitions. Journal of Statistical Physics 101, 459–472 (2000). https://doi.org/10.1023/A:1026437432570

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026437432570

Navigation