Skip to main content
Log in

Spectral Localization by Gaussian Random Potentials in Multi-Dimensional Continuous Space

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A detailed mathematical proof is given that the energy spectrum of a non-relativistic quantum particle in multi-dimensional Euclidean space under the influence of suitable random potentials has almost surely a pure-point component. The result applies in particular to a certain class of zero-mean Gaussian random potentials, which are homogeneous with respect to Euclidean translations. More precisely, for these Gaussian random potentials the spectrum is almost surely only pure point at sufficiently negative energies or, at negative energies, for sufficiently weak disorder. The proof is based on a fixed-energy multi-scale analysis which allows for different random potentials on different length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • [Ad]R. J. Adler, The Geometry of Random Fields (Wiley, Chichester, 1981).

    Google Scholar 

  • [Ai]M. Aizenman, Localization at weak disorder: Some elementary bounds, Rev. Math. Phys. 6:1163–1182 (1994).

    Google Scholar 

  • [An]P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109:1492–1505 (1958).

    Google Scholar 

  • [AG]M. Aizenman and G. M. Graf, Localization bounds for an electron gas, J. Phys. A 31:6783–6806 (1998).

    Google Scholar 

  • [AM]M. Aizenman and S. Molchanov, Localization at large disorder and at extreme energies: An elementary derivation, Commun. Math. Phys. 157:245–278 (1993).

    Google Scholar 

  • [AbS]M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, ninth printing (Dover Publications, New York, 1972).

    Google Scholar 

  • [AiS]M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrö dinger operators, Commun. Pure Appl. Math. 35:209–273 (1982).

    Google Scholar 

  • [ASFH]M. Aizenman, J. H. Schenker, R. M. Friedrich, and D. Hundertmark, Finite-volume criteria for Anderson localization, e-print math-ph/9910022 (1999), to appear in Commun. Math. Phys.

  • [Bel]Yu. K. Belyaev, Analytic random processses, Theory Prob. Applications 4:402–409 (1959) [Russian original: Teor. Ver. Primen. 4:437-444 (1959)].

    Google Scholar 

  • [Ber]S. M. Berman, The maximum of a Gaussian process with nonconstant variance, Ann. Inst. Henri Poincaré, Probab. Stat. 21:383–391 (1985).

    Google Scholar 

  • [BCH1]J.-M. Barbaroux, J. M. Combes, and P. D. Hislop, Landau Hamiltonians with unbounded random potentials, Lett. Math. Phys. 40:355–369 (1997).

    Google Scholar 

  • [BCH2]J. M. Barbaroux, J. M. Combes, and P. D. Hislop, Localization near band edges for random Schrö dinger operators, Helv. Phys. Acta 70:16–43 (1997).

    Google Scholar 

  • [BCM]J.M. Barbaroux, J.M. Combes, and R. Montcho, Remarks on the relation between quantum dynamics and fractal spectra, J. Math. Anal. Appl. 213:698–722 (1997).

    Google Scholar 

  • [BEEK+]V. L. Bonch-Bruevich, R. Enderlein, B. Esser, R. Keiper, A. G. Mironov, and I. P. Zvyagin, Elektronentheorie ungeordneter Halbleiter (VEB Deutscher Verlag der Wissenschaften, Berlin, 1984) [Russian original: (Nauka, Moscow, 1981)].

    Google Scholar 

  • [BFM]J. M. Barbaroux, W. Fischer, and P. Mu- ller, Dynamical properties of random Schro- dinger operators, e-print math-ph/9907002 (1999).

  • [BG]A. Boutet de Monvel and V. Grinshpun, Exponential localization for multi-dimensional Schrö dinger operator with random point potential, Rev. Math. Phys. 9:425–451 (1997).

    Google Scholar 

  • [BHL1]K. Broderix, D. Hundertmark, and H. Leschke, Self-averaging, decomposition and asymptotic properties of the density of states for random Schro- dinger operators with constant magnetic field, in Path Integrals from meV to MeV: Tutzing '92, H. Grabert, A. Inomata, L. S. Schulman, and U. Weiss, eds. (World Scientific, Singapore, 1993), pp. 98–107.

    Google Scholar 

  • [BHL2]K. Broderix, D. Hundertmark, and H. Leschke, Continuity properties of Schro- dinger semigroups with magnetic fields, Rev. Math. Phys. 12:181–225 (2000).

    Google Scholar 

  • [BS]D. Buschmann and G. Stolz, Two-parameter spectral averaging and localization for non-monotonous random Schrö dinger operators (1998), to appear in Trans. Amer. Math. Soc.

  • [CFKS]H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrö dinger Operators (Springer, Berlin, 1987).

    Google Scholar 

  • [CH1]J.-M. Combes and P. D. Hislop, Localization for some continuous, random Hamiltonians in d-dimensions, J. Funct. Anal. 124:149–180 (1994).

    Google Scholar 

  • [CH2]J. M. Combes and P. D. Hislop, Landau Hamiltonians with random potentials: Localization and the density of states, Commun. Math. Phys. 177:603–629 (1996).

    Google Scholar 

  • [CHM]J. M. Combes, P. D. Hislop, and E. Mourre, Correlated Wegner inequalities for random Schrö dinger operators, Contemporary Mathematics 217:191–203 (1998).

    Google Scholar 

  • [CL]R. Carmona and J. Lacroix, Spectral Theory of Random Schrö dinger Operators (Birkhä user, Boston, 1990).

    Google Scholar 

  • [CT]J. M. Combes and L. Thomas, Asymptotic behaviour of eigenfunctions for multi-particle Schro- dinger operators, Commun. Math. Phys. 34:251–270 (1973).

    Google Scholar 

  • [D]P. Doukhan, Mixing, Properties and Examples (Springer, New York, 1994).

    Google Scholar 

  • [DK1]H. von Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model, Commun. Math. Phys. 124:285–299 (1989).

    Google Scholar 

  • [DK2]H. von Dreifus and A. Klein, Localization for random Schro- dinger operators with correlated potentials, Commun. Math. Phys. 140:133–147 (1991).

    Google Scholar 

  • [DLS]F. Delyon, Y. Lé vy, and B. Souillard, Anderson localization for multi-dimensional systems at large disorder or large energy, Commun. Math. Phys. 100: 463–470 (1985).

    Google Scholar 

  • [DMP1]T. C. Dorlas, N. Macris, and J. V. Pulé, Localisation in a single-band approximation to random Schrö dinger operators in a magnetic field, Helv. Phys. Acta 68: 329–364 (1995).

    Google Scholar 

  • [DMP2]T. C. Dorlas, N. Macris, and J. V. Pulé, Localization in single Landau bands, J. Math. Phys. 37:1574–1595 (1996).

    Google Scholar 

  • [DMP3]T. C. Dorlas, N. Macris, and J. V. Pulé, Characterization of the spectrum of the Landau Hamiltonian with delta impurities, Commun. Math. Phys. 204:367–396 (1999).

    Google Scholar 

  • [DS]D. Damanik and P. Stollmann, Multi-scale analysis implies strong dynamical localization, e-print math-ph/9912002 (1999), to appear in Geom. Funct. Anal.

  • [E]K. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  • [F]X. Fernique, Regularité des trajectoires des fonctions ale- atoires Gaussiennes, in Ecole d'Eté de Probabilité s de Saint-Flour IV-1974, Lecture Notes in Mathematics, Vol. 480, P.-L. Hennequin, ed. (Springer, Berlin, 1975), pp. 1–96.

    Google Scholar 

  • [FHLM1]W. Fischer, T. Hupfer, H. Leschke, and P. Mü ller, Rigorous results on Schrö dinger operators with certain Gaussian random potentials in multi-dimensional continuous space, in Differential Equations, Asymptotic Analysis, and Mathematical Physics, M. Demuth and B.-W. Schulze, eds. (Akademie, Berlin, 1997), pp. 105–112.

    Google Scholar 

  • [FHLM2]W. Fischer, T. Hupfer, H. Leschke, and P. Mü ller, Existence of the density of states for multi-dimensional continuum Schro- dinger operators with Gaussian random potentials, Commun. Math. Phys. 190:133–141 (1997).

    Google Scholar 

  • [FK]A. Figotin and A. Klein, Localization of classical waves I: Acoustic waves, Commun. Math. Phys. 180:439–482 (1996).

    Google Scholar 

  • [FLM]W. Fischer, H. Leschke, and P. Mü ller, Towards localisation by Gaussian random potentials in multi-dimensional continuous space, Lett. Math. Phys. 38: 343–348 (1996).

    Google Scholar 

  • [FMSS]J. Frö hlich, F. Martinelli, E. Scoppola, and T. Spencer, Constructive proof of localization in the Anderson tight binding model, Commun. Math. Phys. 101: 21–46 (1985).

    Google Scholar 

  • [FS]J. Frö hlich and T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys. 88:151–184 (1983).

    Google Scholar 

  • [Gra]G. M. Graf, Anderson localization and the space-time characteristic of continuum states, J. Stat. Phys. 75:337–346 (1994).

    Google Scholar 

  • [Gri]A. G. Grin, On a condition for regularity of stationary random processes, Theory Prob. Applications 27:850–855 (1982) [Russian original: Teor. Ver. Primen. 27:789-795 (1982)].

    Google Scholar 

  • [GB]F. Germinet and S. De Biè vre, Dynamical localization for discrete and continuous random Schro- dinger operators, Commun. Math. Phys. 194:323-341 (1998).

    Google Scholar 

  • [GJ]J. Glimm and A. Jaffe, Quantum Physics: A Functional Integral Point of View, 2nd ed. (Springer, New York, 1987).

    Google Scholar 

  • [GR]I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, corrected and enlarged edition (Academic, San Diego, 1980).

    Google Scholar 

  • [Ho]J. S. Howland, Perturbation theory of dense point spectra, J. Funct. Anal. 74: 52–80 (1987).

    Google Scholar 

  • [Hu]D. Hundertmark, On the time-dependent approach to Anderson localization, Math. Nachr. 214:25–38 (2000).

    Google Scholar 

  • [HLMW]T. Hupfer, H. Leschke, P. Mü ller, and S. Warzel, The integrated density of states and its absolute continuity for magnetic Schrö dinger operators with unbounded random potentials, e-print math-ph-0010013 (2000).

  • [HS]A. M. Hinz and G. Stolz, Polynomial boundedness of eigensolutions and the spectrum of Schrö dinger operators, Math. Ann. 294:195–211 (1992).

    Google Scholar 

  • [IR]I. A. Ibragimov and Y. A. Rozanov, Gaussian Random Processes (Springer, New York, 1978) [Russian original: (Nauka, Moscow, 1970)].

    Google Scholar 

  • [Ka]O. Kallenberg, Foundations of Modern Probability (Springer, New York, 1997).

    Google Scholar 

  • [Ki1]W. Kirsch, Random Schrö dinger operators: A course, in Schrö dinger Operators, Lecture Notes in Physics, Vol. 345, H. Holden and A. Jensen, eds. (Springer, Berlin, 1989), pp. 264–370.

    Google Scholar 

  • [Ki2]W. Kirsch, Wegner estimates and Anderson localization for alloy-type potentials, Math. Z. 221:507–512 (1996).

    Google Scholar 

  • [Kl1]F. Klopp, Localisation pour des opé rateurs de Schrö dinger alé atoires dans L2(ℝd ): Un modè le semi-classique, Ann. Inst. Fourier 45:265–316 (1995).

    Google Scholar 

  • [Kl2]F. Klopp, Localization for some continuous random Schro- dinger operators, Commun. Math. Phys. 167:553–569 (1995).

    Google Scholar 

  • [KL]A. Kiselev and Y. Last, Solutions, spectrum, and dynamics for Schrö dinger operators on infinite domains, Duke Math. Journal 102:125–150 (2000).

    Google Scholar 

  • [KM]W. Kirsch and F. Martinelli, On the ergodic properties of the spectrum of general random operators, J. Reine Angew. Math. 334:141–156 (1982).

    Google Scholar 

  • [KSS1]W. Kirsch, P. Stollmann, and G. Stolz, Localization for random perturbations of periodic Schrö dinger operators, Random Operators and Stochastic Equations 6:241–268 (1998).

    Google Scholar 

  • [KSS2]W. Kirsch, P. Stollmann, and G. Stolz, Anderson localization for random Schro- dinger operators with long range interactions, Commun. Math. Phys. 195:495–507 (1998).

    Google Scholar 

  • [La]Y. Last, Quantum dynamics and decompositions of singular continuous spectra, J. Funct. Anal. 142:406–445 (1996).

    Google Scholar 

  • [Li]M. A. Lifshits, Gaussian Random Functions (Kluwer, Dordrecht, 1995).

    Google Scholar 

  • [LGP]I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988) [Russian original: (Nauka, Moscow, 1982)].

    Google Scholar 

  • [M]H. Matsumoto, On the integrated density of states for the Schro- dinger operators with certain random electromagnetic potentials, J. Math. Soc. Japan 45:197–214 (1993).

    Google Scholar 

  • [MH]F. Martinelli and H. Holden, On absence of diffusion near the bottom of the spectrum for a random Schrö dinger operator on L 2(ℝ), Commun. Math. Phys. 93:197–217 (1984).

    Google Scholar 

  • [MS1]F. Martinelli and E. Scoppola, Remark on the absence of absolutely continuous spectrum for d-dimensional Schrö dinger operators with random potential for large disorder or low energy, Commun. Math. Phys. 97:465–471 (1985). Erratum: ibid. 98:579 (1985).

    Google Scholar 

  • [MS2]F. Martinelli and E. Scoppola, Introduction to the mathematical theory of Anderson localization, Rivista del Nuovo Cimento 10(10):1–90 (1987).

    Google Scholar 

  • [PF]L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators (Springer, Berlin, 1992).

    Google Scholar 

  • [PS1]J. V. Pulé and M. Scrowston, Infinite degeneracy for a Landau Hamiltonian with Poisson impurities, J. Math. Phys. 38:6304–6314 (1997).

    Google Scholar 

  • [PS2]J. V. Pulé and M. Scrowston, The spectrum of a magnetic Schrö dinger operator with randomly located delta impurities, J. Math. Phys. 41:2805–2825 (2000).

    Google Scholar 

  • [R]R. D. Richtmyer, Principles of Advanced Mathematical Physics, Vol. I (Springer, New York, 1978).

    Google Scholar 

  • [RJLS]R. del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum IV: Hausdorff dimensions, rank one perturbations and localization, J. d'Analyse Math. 69:153–200 (1996).

    Google Scholar 

  • [RS1]M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, rev. and enl. ed. (Academic, San Diego, 1980).

    Google Scholar 

  • [RS2] M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness (Academic, New York, 1975).

    Google Scholar 

  • [Si]B. Simon, Absence of ballistic motion, Commun. Math. Phys. 134:209–212 (1990).

    Google Scholar 

  • [Sp1]T. C. Spencer, The Schrö dinger equation with a random potential: A mathematical review, in Critical Phenomena, Random Systems, Gauge Theories, Part II, K. Osterwalder and R. Stora, eds. (North-Holland, Amsterdam, 1986), pp. 895–943.

    Google Scholar 

  • [Sp2]T. Spencer, Localization for random and quasiperiodic potentials, J. Stat. Phys. 51:1009–1019 (1988).

    Google Scholar 

  • [St]P. Stollmann, Caught by Disorder: Lectures on Bound States in Random Media (Birkhä user), to appear.

  • [SE]B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984) [Russian original: (Nauka, Moscow, 1979)].

    Google Scholar 

  • [SW]B. Simon and T. Wolff, Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians, Commun. Pure Appl. Math. 39:75–90 (1986).

    Google Scholar 

  • [U]N. Ueki, On spectra of random Schrö dinger operators with magnetic fields, Osaka J. Math. 31:177–187 (1994).

    Google Scholar 

  • [V]I. Veselić, Localisation for random perturbations of periodic Schrö dinger operators with regular Floquet eigenvalues, e-print mp_arc 98-569 (1998).

  • [W]Wei-Min Wang, Microlocalization, percolation, and Anderson localization for the magnetic Schrö dinger operator with a random potential, J. Funct. Anal. 146:1–26 (1997).

    Google Scholar 

  • [Y]V. Yurinsky, Sums and Gaussian Vectors, Lecture Notes in Mathematics, Vol. 1617 (Springer, Berlin, 1995).

    Google Scholar 

  • [Z]H. Zenk, Anderson localization for a multidimensional model including long range potentials and displacements, e-print mp_arc 99-450 (1999).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, W., Leschke, H. & Müller, P. Spectral Localization by Gaussian Random Potentials in Multi-Dimensional Continuous Space. Journal of Statistical Physics 101, 935–985 (2000). https://doi.org/10.1023/A:1026425621261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026425621261

Navigation