Skip to main content
Log in

Janossy Densities. I. Determinantal Ensembles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We derive an elementary formula for Janossy densities for determinantal point processes with a finite rank projection-type kernel. In particular, for β=2 polynomial ensembles of random matrices we show that the Janossy densities on an interval I ⊂ ℝ can be expressed in terms of the Christoffel–Darboux kernel for the orthogonal polynomials on the complement of I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Borodin, Biorthogonal ensembles, Nucl. Phys. B 536:704–732 (1999).

    Google Scholar 

  2. A. Borodin, Discrete gap probabilities and discrete Painlevé equations, to appear in Duke Math. J., available at arXiv:math-ph/0111008.

  3. A. Borodin and D. Boyarchenko, Distribution of the first particle in discrete orthogonal polynomial ensembles, to appear in Commun. Math. Phys., available at arXiv:math-ph/0204001.

  4. A. Borodin and G. Olshanski, Distributions on partitions, point processes, and the hypergeometric kernel, Commun. Math. Phys. 211:335–358 (2000).

    Google Scholar 

  5. A. Borodin and G. Olshanski, Z-measures on partitions, Robinson-Schensted-Knuth correspondence, and β=2 random matrix ensembles, random matrix models and their applications, pp. 71–94, Math. Sci. Res. Inst. Publ., 40 (Cambridge Univ. Press, Cambridge, 2001).

    Google Scholar 

  6. A. Borodin and G. Olshanski, Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes, to appear in Ann. Math., available at arXiv: math.RT/0109194.

  7. A. Borodin and P. Deift, Fredholm determinants, Jimbo-Miwa-Ueno τ-functions and representation theory, Commun. Pure Appl. Math. LV:1160–1230 (2002).

    Google Scholar 

  8. B. V. Bronk, Exponential ensembles for random matrices, J. Math. Phys. 6:228–237 (1965).

    Google Scholar 

  9. K. Clancey and I. Gohberg, Factorization of matrix functions and singular integral operators, in Operator Theory 3 (Birkhäuser-Verlag, Basel, 1981).

    Google Scholar 

  10. P. Deift, Orthogonal polynomials and random matrices: A Riemann-Hilbert approach, in Courant Lecture Notes in Mathematics, Vol. 3 (New York, 1999).

  11. P. Deift, Integrable operators. Differential operators and spectral theory, in American Mathematical Society Translations, Series 2, Vol.189 (American Mathematical Society, Providence, R.I., 1999), pp. 69–84.

    Google Scholar 

  12. D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes (Springer-Verlag, New York, 1988).

    Google Scholar 

  13. A. Edelyi, Higher Transedental Functions, Vol. 2 (McGraw-Hill, New York 1953).

    Google Scholar 

  14. A. S. Fokas, A. R. Its, and A. V. Kitaev, An isomonodromy approach to the theory of two-dimensional quantum gravity, Uspekhi Mat. Nauk. 45:135–136 (1990) [in Russian].

    Google Scholar 

  15. A. S. Fokas, A. R. Its, and A. V. Kitaev, Discrete Painlevé equations and their appearance in quantum gravity, Commun. Math. Phys. 142:313–344 (1991).

    Google Scholar 

  16. P. J. Forrester, The spectrum edge of random matrix ensembles, Nucl. Phys. B 402:709–728 (1993).

    Google Scholar 

  17. P. J. Forrester and T. D. Hughes, Complex Wishart matrices and conductance in mesoscopic systems: Exact results, J. Math. Phys. 35:6736–6747 (1994).

    Google Scholar 

  18. K. Johansson, Shape fluctuations and random matrices, Comm. Math. Phys. 209:437–476 (2000).

    Google Scholar 

  19. K. Johansson, Discrete polynomial ensembles and the Plancherel measure, Ann. Math. 153:259–296 (2001).

    Google Scholar 

  20. K. Johansson, Non-intersecting paths, random tilings and random matrices, Probab. Theory Related Fields 123:225–280 (2002).

    Google Scholar 

  21. M. L. Mehta, Random Matrices (Academic Press, New York, 1991).

    Google Scholar 

  22. K. A. Muttalib, Random matrix models with additional interactions, J. Phys. A 285:L159(1995).

    Google Scholar 

  23. A. R. Its, A. G. Izergin, V. E. Korepin, and N. A. Slavnov, Differential equations for quantum correlation functions, Int. J. Mod. Phys. B4:1003–1037 (1990).

    Google Scholar 

  24. A. R. Its, A. G. Izergin, V. E. Korepin, and N. A. Slavnov, The quantum correlation function as the τ function of classical differential equations, Important Developments in Soliton Theory, A. S. Fokas and V. E. Zakharov, eds. (Springer-Verlag, Berlin, 1993), pp. 407–417.

    Google Scholar 

  25. T. Nagao and M. Wadati, Eigenvalue distribution of random matrices at the spectrum edge, J. Phys. Soc. Japan 62:3845–3856 (1993).

    Google Scholar 

  26. E. Rains, Correlation functions for symmetrized increasing subsequences, available at arXiv:math.CO/0006097.

  27. A. Soshnikov, Determinantal random point fields, Russian Math. Surveys 55:923–975 (2000).

    Google Scholar 

  28. A. Soshnikov, Janossy densities. II. Pfaffian ensembles, J. Stat. Phys. 113:611–622 (2003).

    Google Scholar 

  29. C. A. Tracy and H. Widom, Level-spacing distributions and the Bessel kernel, Commun. Math. Phys. 161:289–309 (1994).

    Google Scholar 

  30. C. A. Tracy and H. Widom, Correlation functions, cluster functions, and spacing distributions for random matrices, J. Stat. Phys. 92:809–835 (1998).

    Google Scholar 

  31. H. Widom, On the relation between orthogonal, symplectic, and unitary matrix ensembles, J. Stat. Phys. 94:347–363 (1999).

    Google Scholar 

  32. W. Wieczorek, Distribution of the largest eigenvalues of the Levi-Smirnov ensemble, available at arXiv:hep-ph/0209042.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borodin, A., Soshnikov, A. Janossy Densities. I. Determinantal Ensembles. Journal of Statistical Physics 113, 595–610 (2003). https://doi.org/10.1023/A:1026025003309

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026025003309

Navigation