Skip to main content
Log in

Crossing Probabilities and Modular Forms

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We examine crossing probabilities and free energies for conformally invariant critical 2-D systems in rectangular geometries, derived via conformal field theory and Stochastic Löwner Evolution methods. These quantities are shown to exhibit interesting modular behavior, although the physical meaning of modular transformations in this context is not clear. We show that in many cases these functions are completely characterized by very simple transformation properties. In particular, Cardy's function for the percolation crossing probability (including the conformal dimension 1/3), follows from a simple modular argument. A new type of “higher-order modular form” arises and its properties are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. L. Cardy, Operator content of two-dimensional conformally invariant theories, Nuclear Phys. B 270:186–204 (1986).

    Google Scholar 

  2. G. F. Lawler, O. Schramm, and W. Werner, Values of Brownian intersection exponents I: Half-plane exponents, Acta Math. 187:237–273 (2001).

    Google Scholar 

  3. J. L. Cardy, Critical percolation in finite geometries, J. Phys. A: Math. Gen. 25:L201–206 (1992). [arXiv:hep-th/9111026].

    Google Scholar 

  4. G. Watts, A crossing probability for critical percolation in two dimensions, J. Phys. A: Math. Gen. 29:L363(1996). [arXiv: cond-mat/9603167].

    Google Scholar 

  5. P. Kleban and I. Vassileva, Free energy of rectangular domains at criticality, J. Phys. A: Math. Gen. 24:3407(1991).

    Google Scholar 

  6. H. Kesten, Percolation Theory for Mathematicians (Birkhauser, Boston, 1982)

    Google Scholar 

  7. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1992).

    Google Scholar 

  8. R. Langlands, C. Pichet, P. Pouliot, and Y. Saint-Aubin, On the universality of crossing probabilities in two-dimensional percolation, J. Stat. Phys. 67:553–574 (1992).

    Google Scholar 

  9. R. M. Ziff, On Cardy's formula for the crossing probability in 2D percolation, J. Phys. A: Math. Gen. 28:1249–1255 (1995).

    Google Scholar 

  10. R. M. Ziff, Proof of crossing formula for 2D percolation, J. Phys. A: Math. Gen. 28:6479–6480 (1995)

    Google Scholar 

  11. S. Smirnov, Critical percolation in the plane, C. R. Acad. Sci. Paris 333:221–288 (2001).

    Google Scholar 

  12. P. Kleban, Crossing probabilities in critical 2-D percolation and modular forms, Physica A 281:242–251 (2000). [arXiv: cond-mat/9911070].

    Google Scholar 

  13. V. Gurarie, Logarithmic operators in conformal field theory, Nuclear Phys. B 410: 535–549 (1993). [arXiv:hep-th/9303160].

    Google Scholar 

  14. M. Flohr, Bits and pieces in logarithmic conformal field theory, preprint [arXiv:hep-th/0111228].

  15. M. R. Gaberdiel, An algebraic approach to logarithmic conformal field theory, preprint [arXiv:hep-th/0111260].

  16. J. L. Cardy, Logarithmic correlations in quenched random magnets and polymers, [arXiv:cond-mat/ 9911024].

  17. V. Gurarie and A. W. W. Ludwig, Conformal algebras of 2D disordered systems, J. Phys. A 35:L377-L384 (2002). [arXiv:cond-mat/9911392]

    Google Scholar 

  18. S. Rohde and O. Schramm, Basic properties of SLE, preprint [arXiv:math.PR/0106036].

  19. G. F. Lawler, O. Schramm, and W. Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees, preprint [arXiv:math.PR/0112234]

  20. N. Koblitz, Introduction to Elliptic Curves and Modular Forms (Springer-Verlag, New York, 1993).

    Google Scholar 

  21. J. L. Cardy, Lectures on confomal invariance and percolation, preprint [arXiv:math-ph/0103018].

  22. M. Bauer and D. Bernard, Conformal field theories of stochastic Loewner evolutions, Comm. Math. Phys. (to appear).

  23. R. Friedrich and W. Werner, Conformal fields, restriction properties, degenerate representations and SLE, Comm. Math. Phys. (to appear).

  24. J. L. Cardy and I. Peschel, Finite-size dependence of the free energy in two-dimensional critical systems, Nuclear Phys. B 300:377(1988).

    Google Scholar 

  25. G. Chinta, N. Diamantis, and C. O'sullivan, Second order modular forms, Acta Arith. 103:209–223 (2002).

    Google Scholar 

  26. R. Langlands, M.-A. Lewis, and Y. Saint-Aubin, Universality and conformal invariance for the Ising model in domains with boundary, J. Stat. Phys. 98:131–244 (2000). [arXiv:hep-th/9904088].

    Google Scholar 

  27. E. Lapalme and Y. Saint-Aubin, Crossing probabilities on same-spin clusters in the two-dimensional Ising model, J. Phys. A 34:1825–1835 (2001). [arXiv: hep-th/0005104].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleban, P., Zagier, D. Crossing Probabilities and Modular Forms. Journal of Statistical Physics 113, 431–454 (2003). https://doi.org/10.1023/A:1026012600583

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026012600583

Navigation