Skip to main content
Log in

Noise Induced Dissipation in Lebesgue-Measure Preserving Maps on d-Dimensional Torus

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider dissipative systems resulting from the Gaussian and alpha-stable noise perturbations of measure-preserving maps on the d dimensional torus. We study the dissipation time scale and its physical implications as the noise level ε vanishes. We show that nonergodic maps give rise to an O(1/ε) dissipation time whereas ergodic toral automorphisms, including cat maps and their d-dimensional generalizations, have an O(ln(1/ε)) dissipation time with a constant related to the minimal, dimensionally averaged entropy among the automorphism's irreducible blocks. Our approach reduces the calculation of the dissipation time to a nonlinear, arithmetic optimization problem which is solved asymptotically by means of some fundamental theorems in theories of convexity, Diophantine approximation and arithmetic progression. We show that the same asymptotic can be reproduced by degenerate noises as well as mere coarse-graining. We also discuss the implication of the dissipation time in kinematic dynamo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. L. Adler and P. Palais, Homeomorphic conjugacy of automorphisms on the torus, Proc. Amer. Math. Soc. 16:1222-1225 (1965).

    Google Scholar 

  2. R. L. Adler and B. Weiss, Similarity of automorphisms of the torus, Mem. Amer. Math. Soc. 98(1970).

  3. V. I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics, The Mathematical Physics Monograph Series (W. A. Benjamin, 1968).

  4. S. Childress and A. D. Gilbert, Stretch, Twist, Fold: The Fast Dynamo, Lecture Notes in Physics, Vol. 37 (Springer, Berlin, 1995).

    Google Scholar 

  5. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic Theory, Grundlehren der mathematischen Wissenschaften, Vol. 245 (Springer-Verlag, 1982).

  6. I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hung. 2:299(1967).

    Google Scholar 

  7. D. S. Dummit and R. M. Foote, Abstract Algebra, 2nd ed. (Wiley, 1999).

  8. A. Fannjiang, Time scales homogenization of periodic flows with vanishing molecular diffusion, J. Differential Equations 179:433-455 (2002).

    Google Scholar 

  9. J. Franks, Anosov diffeomorphisms on tori, Trans. Amer. Math. Soc. 145:117-124 (1969).

    Google Scholar 

  10. K. Goodrich, K. Gustafson, and B. Misra, On converse to Koopman's lemma, Physica A 102:379-388 (1980).

    Google Scholar 

  11. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, Vol. 54 (Cambridge University Press, 1995).

  12. Y. Katznelson Ergodic automorphisms of Tn are Bernoulli shifts, Israel Math. Jour. 10:186-195 (1971).

    Google Scholar 

  13. Y. Kifer, Random Perturbations of Dynamical Systems (Birkhäuser, Boston, 1988).

    Google Scholar 

  14. N. S. Krylov, Works on the Foundations of Statistical Physics (Princeton University Press, 1979).

  15. L. Klaper and L. S. Young, Rigorous bounds on the fast dynamo growth rate involving topological entropy, Commun. Math. Phys. 173:623-646 (1995).

    Google Scholar 

  16. A. Lasota and M. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, 2nd ed. (Spring-Verlag, New York, 1994).

    Google Scholar 

  17. M. A. Lukomskaya, A new proof of the theorem of van der Waerden on arithmetic progressions and some generalizations of this theorem. (Russian) Uspehi Matem. Nauk (N.S.) 3:201-204 (1948).

    Google Scholar 

  18. A. Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math. 96:422-429 (1974).

    Google Scholar 

  19. F. Mezzadri, On the multiplicativity of quantum cat maps, Nonlinearity 15:905-922 (2002).

    Google Scholar 

  20. M. Newman, Integral Matrices, Pure and Applied Mathematics, Vol. 45 (Academic Press, 1972).

  21. D. S. Ornstein and B. Weiss, Statistical properties of chaotic systems, Bull. Amer. Math. Soc. 24:11-116 (1991).

    Google Scholar 

  22. A. Rivas and A. M. Ozorio de Almeida, The Weyl representation on the torus, Ann. Phys. 276:123(1999).

    Google Scholar 

  23. M. Rosenblatt, Markov Processes. Structure and Asymptotic Behavior (Springer-Verlag, 1971).

  24. W. M. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, Vol. 785 (Springer-Verlag, 1980).

  25. B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wiskunde 2:212-216 (1927).

    Google Scholar 

  26. S. A. Yuzvinskii, Computing the entropy of a group of endomorphisms, Siberian Math. Jour. 8:172-178 (1967).

    Google Scholar 

  27. A. Zygmund, Trigonometric Series, Vol. 2 (Cambridge, 1959).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fannjiang, A., Wołowski, L. Noise Induced Dissipation in Lebesgue-Measure Preserving Maps on d-Dimensional Torus. Journal of Statistical Physics 113, 335–378 (2003). https://doi.org/10.1023/A:1025787124437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025787124437

Navigation