Skip to main content
Log in

Transport Properties of a Modified Lorentz Gas

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a detailed study of the first simple mechanical system that shows fully realistic transport behavior while still being exactly solvable at the level of equilibrium statistical mechanics. The system under consideration is a Lorentz gas with fixed freely-rotating circular scatterers interacting with point particles via perfectly rough collisions. Upon imposing a temperature and/or a chemical potential gradient, a stationary state is attained for which local thermal equilibrium holds for low values of the imposed gradients. Transport in this system is normal, in the sense that the transport coefficients which characterize the flow of heat and matter are finite in the thermodynamic limit. Moreover, the two flows are non-trivially coupled, satisfying Onsager's reciprocity relations to within numerical accuracy as well as the Green–Kubo relations. We further show numerically that an applied electric field causes the same currents as the corresponding chemical potential gradient in first order of the applied field. Puzzling discrepancies in higher order effects (Joule heating) are also observed. Finally, the role of entropy production in this purely Hamiltonian system is shortly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Bonetto, J. L. Lebowitz, and L. Rey-Bellet, arXiv:math-ph/0002052, (2001).

  2. J. L. Lebowitz and H. Spohn, J. Stat. Phys. 19:633(1978).

    Google Scholar 

  3. J. L. Lebowitz and H. Spohn, J. Stat. Phys. 28:539(1982).

    Google Scholar 

  4. L. A. Bunimovich and Ya. G. Sinai, Comm. Math. Phys. 78:247(1980).

    Google Scholar 

  5. L. A. Bunimovich and Ya. G. Sinai, Comm. Math. Phys. 78:479(1981).

    Google Scholar 

  6. P. Gaspard, J. Stat. Phys. 68:673(1992).

    Google Scholar 

  7. J. R. Dorfman and P. Gaspard, Phys. Rev. E 51:28(1995).

    Google Scholar 

  8. N. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai, Comm. Math. Phys. 154:569(1993).

    Google Scholar 

  9. B. L. Holian, W. G. Hoover, and H. A. Posch, Phys. Rev. Lett. 59:10(1987).

    Google Scholar 

  10. B. Moran and W. G. Hoover, J. Stat. Phys. 48:709(1987).

    Google Scholar 

  11. I. Chernov, G. L. Eyink, J. L. Lebowitz, and Y. G. Sinai, Phys. Rev. Lett. 70:2209(1993).

    Google Scholar 

  12. D. MacGowan and D. J. Evans, Phys. Rev. A 34:2133(1986).

    Google Scholar 

  13. S. Lepri, R. Livi, and A. Politi, Phys. Rev. Lett. 78:1896(1997).

    Google Scholar 

  14. G. Casati, J. Ford, F. Vivaldi, and W. M. Visscher, Phys. Rev. Lett. 52:1861(1984).

    Google Scholar 

  15. T. Prosen and M. Robnik, J. Phys. A:Math. Gen. 25:3449(1992).

    Google Scholar 

  16. L. Rondoni and E. G. D. Cohen, Physica D 168-169:341(2002).

    Google Scholar 

  17. E. G. D. Cohen and L. Rondoni, Physica A 306:117(2002).

    Google Scholar 

  18. D. Alonso, R. Artuso, G. Casati, and I. Guarneri, Phys. Rev. Lett. 82:1859(1999).

    Google Scholar 

  19. A. Dhar and D. Dhar, Phys. Rev. Lett. 82:480(1999).

    Google Scholar 

  20. B. Hu, B. Li, and H. Zhao, Phys. Rev. Lett. 82:480(1998).

    Google Scholar 

  21. T. Prosen and D. K. Campbell, Phys. Rev. Lett. 84:2857(2000).

    Google Scholar 

  22. C. Mejía-Monasterio, H. Larralde, and F. Leyvraz, Phys. Rev. Lett. 86:5417(2001).

    Google Scholar 

  23. L. Reichl, A Modern Course in Statistical Physics (Austin University of Texas Press, 1987).

  24. K. Rateitschack, R. Klages, and G. Nicolis, J. Stat. Phys. 99:1339(2000).

    Google Scholar 

  25. Due to the homogeneity in energy of this system there is not no proper energy scale or equivalently, no proper time scale. Therefore, all energies and temperatures reported in this work are given in arbitrary units.

  26. R. Tehver, F. Toigo, J. Koplik, and J. R. Banavar, Phys. Rev. E. 57:R17(1998).

    Google Scholar 

  27. T. Hatano, Phys. Rev. E 59:R1(1999).

    Google Scholar 

  28. Actually, the obtained average velocity was 〈vx〉=0.004, which is of the same order of the particle current Jρ=0.0027. We have also measured the deviations from the Maxwell distribution for huge gradients in the chemical potential, far from the linear regime. There, while the deviations are much clearer, not just in the average velocity but in the width of the distribution too, their relative value is still of 1%.

  29. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (Dover, New York, 1984).

    Google Scholar 

  30. We derive Green-Kubo relations for the diffusion coefficients that involve the collective heat and matter transport we observe. The self-diffusion coefficient, obtained from the velocity auto-correlation function of a tagged particle diffusing in a fluid of identical particles coincides with the diffusion coefficient only for systems with noninteracting particles.

  31. See also, Y. Zhou and G. H. Miller, J. Phys. Chem. 100, 5516(1996).

    Google Scholar 

  32. N. G. van Kampen, Phys. Norv. 5:279(1971).

    Google Scholar 

  33. W. M. Visscher, Phys. Rev. A 10:2461(1974).

    Google Scholar 

  34. D. Ruelle, J. Stat. Phys. 85:1(1996).

    Google Scholar 

  35. J. R. Dorfman, An Introduction to Cahos in Nonequilibrium Statistical Mechanics (Cambridge University Press, Cambridge 1999).

    Google Scholar 

  36. G. Gallavotti and E. G. D. Cohen, J. Stat. Phys. 80:931(1995)

    Google Scholar 

  37. G. Gallavotti and E. G. D. CohenPhys. Rev. Lett. 74:2694(1995).

    Google Scholar 

  38. D. Ruelle, J. Stat. Phys. 95:393(1999).

    Google Scholar 

  39. D. J. Evans, E. G. D. Cohen, D. Searles, and F. Bonetto, J. Stat. Phys. 101:17 (2000).

    Google Scholar 

  40. J. R. Dorfman, P. Gaspard, and T. Gilbert, Phys. Rev. E 66:026110(2002).

    Google Scholar 

  41. P. Gaspard, Chaos, Scattering, and Statistical Mechanics (Cambridge University Press, Cambridge 1998).

    Google Scholar 

  42. W. Breymann, T. Tél, and J. Vollmer, Phys. Rev. Lett. 77:2945(1996).

    Google Scholar 

  43. S. Lepri, R. Livi, and A. Politi, Physica D 119:140(1998).

    Google Scholar 

  44. K. Aoki and D. Kusnezov, Phys. Lett. A 265:250(2000).

    Google Scholar 

  45. A. Dhar, Phys. Rev. Lett. 86:3554(2001).

    Google Scholar 

  46. K. Aoki and D. Kusnezov, Phys. Rev. Lett. 86:4029(2001).

    Google Scholar 

  47. J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95:333(1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larralde, H., Leyvraz, F. & Mejía-Monasterio, C. Transport Properties of a Modified Lorentz Gas. Journal of Statistical Physics 113, 197–231 (2003). https://doi.org/10.1023/A:1025726905782

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025726905782

Navigation