Skip to main content
Log in

2D Crystal Shapes, Droplet Condensation, and Exponential Slowing Down in Simulations of First-Order Phase Transitions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Multicanonical ensemble simulations for the simulation of first-order phase transitions suffer from exponential slowing down. Monte Carlo autocorrelation times diverge exponentially with free energy barriers ΔF, which in L d boxes grow as L d−1. We exemplify the situation in a study of the 2D Ising-model at temperature T/T c =0.63 for two different lattice manifolds, toroidal lattices, and surfaces of cubes. For both geometries the effect is caused by discontinuous droplet shape transitions between various classical crystal shapes obeying geometrical constraints. We use classical droplet theory and numerical simulations to calculate transition points and barrier heights. On toroidal lattices we determine finite size corrections to the droplet free energy, which are given by a linear combination of Gibbs–Thomson corrections, capillary wave fluctuation corrections, constant terms, and logarithmic terms in the droplet volume. Tolman corrections are absent. In addition, we study the finite size effects on the condensation phase transition, which occurs in infinite systems at the Onsager value of the magnetization. We find that this transition is of discontinuous order also. A combination of classical droplet theory and Gibbs–Thomson corrections yields a fair description for the transition point and for the droplet size discontinuity for large droplets. We also estimate the nucleation barrier that has to be surmounted in the formation of the stable droplet at coexistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Binder and M. H. Kalos, J. Stat. Phys. 22:363(1980).

    Google Scholar 

  2. L. S. Schulman, J. Phys. A: Math. Gen. 13:237(1980).

    Google Scholar 

  3. K. Binder, Z. Phys. B 43:119(1981).

    Google Scholar 

  4. H. Furukawa and K. Binder, Phys. Rev. B 26:556(1982).

    Google Scholar 

  5. J. Lee, M. A. Novotny, and P. A. Rikvold, Phys. Rev. E 52:356(1995).

    Google Scholar 

  6. B. A. Berg and T. Neuhaus, Phys. Lett. B 267:249(1991).

    Google Scholar 

  7. B. A. Berg and T. Neuhaus, Phys. Rev. Lett. 68:9(1992).

    Google Scholar 

  8. B. A. Berg, U. Hansmann, and T. Neuhaus, Phys. Rev. B 47:497(1993).

    Google Scholar 

  9. B. A. Berg, U. Hansmann, and T. Neuhaus, Z. Phys. B 90:229(1993).

    Google Scholar 

  10. B. A. Berg, J. Stat. Phys. 82:323(1996).

    Google Scholar 

  11. F. Wang and D. P. Landau, Phys. Rev. Lett. 86:2050(2001).

    Google Scholar 

  12. T. Neuhaus, J. S. Hager, preprint.

  13. K. Leung and R. K. P. Zia, J. Phys. A: Math. Gen. 23:4593(1990).

    Google Scholar 

  14. M. E. Fisher, Physics 3:255(1967).

    Google Scholar 

  15. J. S. Langer, Ann. Phys. 41:108(1967).

    Google Scholar 

  16. B. McCoy and T. T. Wu, The Two-Dimensional Ising-Model (Harvard University Press, Cambridge, 1973).

    Google Scholar 

  17. C. Rottman and M. Wortis, Phys. Rep. 103:59(1984)

    Google Scholar 

  18. G. Wulff, Z. Kristallogr. 34:449(1901).

    Google Scholar 

  19. W. L. Winterbottom, Acta Metall. 15:303(1967).

    Google Scholar 

  20. R. K. P. Zia, J. E. Avron, and J. E. Taylor, J. Stat. Phys. 50:727(1988).

    Google Scholar 

  21. S. B. Shlosman, Commun. Math. Phys. 125:81(1989).

    Google Scholar 

  22. V. Privman, Phys. Rev. Lett. 61:183(1988).

    Google Scholar 

  23. M. P. Gelfand and M. E. Fisher, Int. J. Thermophys. 9:713(1988).

    Google Scholar 

  24. R. C. Tolman, J. Chem. Phys. 17:333(1949).

    Google Scholar 

  25. J. G. Kirkwood and F. P. Buff, J. Stat. Phys. 17:338(1949).

    Google Scholar 

  26. M. P. A. Fisher and M. Wortis, Phys. Rev. B 29:6252(1984).

    Google Scholar 

  27. B. Krishnamachari, J. McLean, B. Cooper, and J. Sethna, Phys. Rev. B 54:8899(1996).

    Google Scholar 

  28. M. Pleimling and W. Selke, J. Phys. A: Math. Gen. 33:L199(2000).

    Google Scholar 

  29. M. Pleimling and A. Hüller, J. Stat. Phys. 104:971(2001).

    Google Scholar 

  30. A. Coniglio et al., J. Phys. A: Math. Gen. 10:205(1977).

    Google Scholar 

  31. C. Borgs and R. Kotecký, Physica A 194:128(1993).

    Google Scholar 

  32. M. Campostrini, J. Stat. Phys. 103:369(2001).

    Google Scholar 

  33. T. Bodineau, D. Joffe, and Y. Velenik, J. Math. Phys. 41:1033(2000).

    Google Scholar 

  34. H. L. Richards, M. Kolesik, P. A. Lindgård, P. A. Rikvold, and M. A. Novotny, Phys. Rev. B 55:11521(1997).

    Google Scholar 

  35. P. A. Rikvold, H. Tomita, S. Miyashita, and S. W. Sides, Phys. Rev. E 49:5080(1994).

    Google Scholar 

  36. M. Biskup, L. Chayes, and R. Kotecký, Europhys. Lett. 60:21(2002).

    Google Scholar 

  37. A. Billoire, T. Neuhaus, and B. Berg, Nucl. Phys. B 413:795(1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuhaus, T., Hager, J.S. 2D Crystal Shapes, Droplet Condensation, and Exponential Slowing Down in Simulations of First-Order Phase Transitions. Journal of Statistical Physics 113, 47–83 (2003). https://doi.org/10.1023/A:1025718703965

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025718703965

Navigation