Skip to main content
Log in

Analogues of Non-Gibbsianness in Joint Measures of Disordered Mean Field Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

It is known that the joint measures on the product of spin-space and disorder space are very often non-Gibbsian measures, for lattice systems with quenched disorder, at low temperature. Are there reflections of this non-Gibbsianness in the corresponding mean-field models? We study the continuity properties of the conditional probabilities in finite volume of the following mean field models: (a) joint measures of random field Ising, (b) joint measures of dilute Ising, (c) decimation of ferromagnetic Ising. The conditional probabilities are functions of the empirical mean of the conditionings; so we look at the large volume behavior of these functions to discover non-trivial limiting objects. For (a) we find (1) discontinuous dependence for almost any realization and (2) dependence of the conditional probabilities on the phase. In contrast to that we see continuous behavior for (b) and (c), for almost any realization. This is in complete analogy to the behavior of the corresponding lattice models in high dimensions. It shows that non-Gibbsian behavior which seems a genuine lattice phenomenon can be partially understood already on the level of mean-field models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Borgs, J. T. Chayes, H. Kesten, and J. Spencer, The birth of the infinite cluster: Finite-size scaling in percolation, Comm. Math. Phys. 224:153–204 (2001).

    Google Scholar 

  2. C. Külske, Metastates in disordered mean-field models: Random field and Hopfield models, J. Stat. Phys. 88:1257–1293 (1997).

    Google Scholar 

  3. C. Külske, Metastates in disordered mean-field models II: The superstates, J. Stat. Phys. 91:155–176 (1998).

    Google Scholar 

  4. C. M. Newman and D. L. Stein, Non-mean-field behavior of realistic spin glasses, Phys. Rev. Lett. 76:515–518 (1996).

    Google Scholar 

  5. C. M. Newman and D. L. Stein, Spatial inhomogeneity and thermodynamic chaos, Phys. Rev. Lett. 76:4821–4824 (1996).

    Google Scholar 

  6. A. Bovier, Statistical Mechanics of Disordered Systems, MaPhySto lecture notes, Vol. 10, available at http://www.maphysto.dk

  7. M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond, World Scientific Lecture Notes in Physics, Vol. 9 (1987).

  8. C. M. Newman and D. L. Stein, The state(s) of replica symmetry breaking: Mean field theories vs. short-ranged spin glasses, J. Stat. Phys. 106:213–244 (2002).

    Google Scholar 

  9. E. Marinari, G. Parisi, F. Ricci-Tersenghi, J. J. Ruiz-Lorenzo, and F. Zuliani, Replica symmetry breaking in short-range spin glasses: Theoretical foundations and numerical evidences, J. Stat. Phys. 98:973–1047 (2000).

    Google Scholar 

  10. A. C. D. van Enter and J. Lörinczi, Robustness of the non-Gibbsian property: Some examples, J. Phys. A 29:2465–2473 (1996).

    Google Scholar 

  11. T. Morita, Statistical mechanics of quenched solid solutions with application to magnetically dilute alloys, J. Math. Phys. 5:1402–1405 (1964).

    Google Scholar 

  12. M. Serva and G. Paladin, Gibbs thermodynamic potentials for disordered systems, Phys. Rev. Lett. 70:105–108 (1993).

    Google Scholar 

  13. R. Kühn, Equilibrium ensemble approach to disordered systems I: General theory, exact results, Z. Phys. 100:231–242 (1996).

    Google Scholar 

  14. R. Kühn and G. Mazzeo, Critical behavior of the randomly spin diluted 2D Ising model: A grand ensemble approach, Phys. Rev. Lett. 73:2268–2271 (1994).

    Google Scholar 

  15. A. C. D. van Enter, C. Maes, R. H. Schonmann, and S. Shlosman, The Griffiths singularity random field, On Dobrushin's Way: From Probability Theory to Statistical Physics, Amer. Math. Soc. Transl. Serie 2, Vol. 198 (Amer. Math. Soc., Providence, P.I., 2000), pp. 51–58.

    Google Scholar 

  16. C. Külske, (Non-)gibbsianness and phase transitions in random lattice spin models, Markov Process. Related Fields 5:357–383 (1999).

    Google Scholar 

  17. C. Külske, Weakly Gibbsian representations for joint measures of quenched lattice spin models, Probab. Theory Related Fields 119:1–30 (2001).

    Google Scholar 

  18. A. C. D. van Enter, C. Maes, and C. Külske, Comment on ref. 14, Phys. Rev. Lett. 84:6134(2000).

    Google Scholar 

  19. R. Kühn and G. Mazzeo, Reply to ref. 18, Phys. Rev. Lett. 84:6135(2000).

    Google Scholar 

  20. A. C. D. van Enter, R. Fernández, and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory, J. Stat. Phys. 72:879–1167 (1993).

    Google Scholar 

  21. C. Maes, F. Redig, S. Shlosman, and A. van Moffaert, Percolation, path large deviations and weak Gibbsianity, Comm. Math. Phys. 209:517–45 (2000).

    Google Scholar 

  22. J. Bricmont, A. Kupiainen, and R. Lefevere, Renormalization group pathologies and the definition of Gibbs states, Comm. Math. Phys. 194:359–388 (1998).

    Google Scholar 

  23. C. Külske, Regularity properties of potentials for joint measures of random spin systems, WIAS preprint0781, available at http://www.ma.utexas.edu/mp-arc/preprint 02–519, to be published in Markov Process. Related Field.

  24. C. Külske, A. Le Ny, and F. Redig, Variational principle for generalized Gibbs measures, Eurandom preprint 2002–035 (2002), available at http://www.ma.utexas.edu/mp-arc/ preprint 02–466.

  25. S. R. Salinas and W. F. Wreszinski, On the mean-field Ising model in a random external field, J. Stat. Phys. 41:299–313 (1985).

    Google Scholar 

  26. J. M. G. Amaro de Matos, A. E. Patrick, and V. A. Zagrebnov, Random infinite-volume Gibbs states for the Curie–Weiss random field Ising model, J. Stat. Phys. 66:139–164 (1992).

    Google Scholar 

  27. R. Fernández, A. Le Ny, and F. Redig, Variational principle and almost quasilocality for renormalized measures, J. Stat. Phys 111:465–477 (2003).

    Google Scholar 

  28. H. O. Georgii, O. Häggström, and C. Maes, The random geometry of equilibrium phases, in Phase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds., Vol. 18 (Academic Press, London, 2000), pp. 1–142.

    Google Scholar 

  29. A. C. D. van Enter, R. Fernández, F. den Hollander, and F. Redig, Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures, Comm. Math. Phys. 226:101–130 (2002).

    Google Scholar 

  30. J. Bricmont and A. Kupiainen, Phase transition in the 3d random field Ising model, Commun. Math. Phys. 142:539–572 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Külske, C. Analogues of Non-Gibbsianness in Joint Measures of Disordered Mean Field Models. Journal of Statistical Physics 112, 1079–1108 (2003). https://doi.org/10.1023/A:1024615625364

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024615625364

Navigation