Skip to main content
Log in

Elimination of the associated microbial community and bioencapsulation of bacteria in the rotifer Brachionus plicatilis

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The bioencapsulation of live bacteria in the rotifer Brachionus plicatilis was determined under monoxenic conditions. The first objective was to evaluate the microbiota of the rotifer during intensive production and to obtain sterile rotifer cultures starting from adult females or amictic eggs using PVP-Iodine, Hydrogen peroxide or antibiotic mixtures. In the rotifers, the proportion of vibrios increased significantly during the mass production, displacing other unidentified marine bacteria. Rotifers, in the absence of culturable bacteria were obtained starting from amictic eggs and using Trimetroprim-sulfametoxasole (Bactrim Roche®) at 10 ml l−1. The effect of members of Vibrionaceae on the survival and growth rate of rotifers was determined under monoxenic conditions. The survival of rotifers was not affected in the presence of different isolates, while amictic egg formation occurred and the populations increased when the strains Vibrio proteolyticus C279 and Aeromonas media C226 were tested. All isolates were successfully incorporated in the rotifers, since there was no significant difference between the numbers of bioencapsulated cells of different strains of isolates. The results show that it is possible to replace the microbial community in rotifer cultures, started from disinfected amictic eggs, with selected bacterial strains. This could be used as a tool for future studies to reveal the role of specific bacteria on first larval stages of marine fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Campbell R., Adams A., Tatner M.F., Chair M. and Sorgeloos P. 1993. Uptake of Vibrio Anguillarum vaccine by Artemia salina as a potential oral delivery system to fish fry. Fish Shellfish Immunol. 3: 451–459.

    Google Scholar 

  • Campbell A.C. and Buswell J.A. 1983. The intestinal microflora of farmed Dover sole (Solea solea) at different stages of fish development. J. Appl. Bacteriol. 35: 215–225.

    Google Scholar 

  • Chair M., Dehasque M., Van-Poucke S., Nelis H., Sorgeloos P. and De-Leenheer A.P. 1994. An oral challenge for turbot larvae with Vibrio anguillarum. Aquacult. Int. 2: 270–272.

    Google Scholar 

  • Douillet P. 1998. Disinfection of rotifer cysts leading to bacteria-free populations. J. Exp. Mar. Biol. Ecol. 224: 183–192.

    Google Scholar 

  • Gatesoupe F.J. 1982. Nutritional and antibacterial treatments of live food organisms: The influence on survival, growth rate and weaning success of turbot (Scophtalmus maximus). Ann. Zootech. 4: 353–368.

    Google Scholar 

  • Gatesoupe F.J. 1989. Further advances in the nutritional and antibacterial treatments of rotifers as food for turbot larvae, Scophtalmus maximus (L.). In: M. de Pauw, E. Jaspers, H. Ackfors and N. Wilkins (eds), Aquaculture: A Biotechnology in Progress, Vol. 2. European Aquaculture Society, Bredene, Belgium, pp. 721–730.

    Google Scholar 

  • Gatesoupe F.J. 1990. The continuous feeding of turbot larvae, Scophtalmus maximus, and control of the bacterial environment of rotifers. Aquaculture 89: 139–148.

    Google Scholar 

  • Gatesoupe F.J. 1991a. Experimental infection of turbot larvae, Scophtalmus maximus (L.), with a strain of Aeromonas hydrophila. J. Fish Dis. 14: 495–498.

    Google Scholar 

  • Gatesoupe F.J. 1991b. The effect of three strains of lactic bacteria on the production rate of rotifers, Brachionus plicatilis, and their dietary value for larval turbot, Scophtalmus maximus. Aquaculture 96: 335–342.

    Google Scholar 

  • Gatesoupe F.J., Arakawa T. and Watanabe T. 1989. The effect of bacterial additives on the production rate and dietary value of rotifers as food for Japanese flounder, Paralichthys olivaceus. Aquaculture 83: 39–44.

    Google Scholar 

  • Gomez-Gil B., Herrera-Vega M.A., Abreu-Grobois F.A. and Roque A. 1998. Bioencapsulation of two different Vibrio species in nauplii of the brine shrimp (Artemia franciscana). Appl. Env. Microbiol 64: 2318–2322.

    Google Scholar 

  • Grisez L., Chair M., Sorgeloos P. and Ollevier F. 1996. Mode of infection and spread of Vibrio anguillarum in turbot Scophthalmus maximus larvae after oral challenge through live feed. Dis. Aquat. Org. 26: 181–187.

    Google Scholar 

  • Hagiwara A., Hamada K., Hori S. and Hirayama K. 1994. Increased sexual reproduction in Brachionus plicatilis (Rotifera) with the addition of bacteria and rotifer extracts. J. Exp. Mar. Biol. Ecol. 181: 1–8.

    Google Scholar 

  • Hino A. 1993. Present culture systems of the rotifer (Brachionus plicatilis) and the function of micro-organisms. In: C.S. Lee, M.S. Su and I.C. Liao (eds), Finfish Hatchery in Asia: Proceedings of Finfish Hatchery in Asia' 91, Vol. 3. TML Conference Proceedings, pp. 51–59.

  • Hirayama K. and Maruyama I. 1991. Vitamin B sub(12) content as a limiting factor for mass production of the rotifer Brachionus plicatilis. In: P. Lavens, P. Sorgeloos, E. Jaspers and F. Ollevier (eds), LARVI'91, Vol. 15. pp. 101–103.

  • Makridis P., Fjellheim A.J., Skjermo J. and Vadstein O. 2000. Control of the bacterial flora of Brachionus plicatilis and Artemia franciscana by incubation in bacterial suspensions. Aquaculture 185: 207–218.

    Google Scholar 

  • Masumura K., Yasunobu H., Okada N. and Muroga K. 1989. Isolation of a Vibrio sp. the causative bacterium of intestinal necrosis of Japanese flounder larvae. Fish Pathol. 24: 135–141.

    Google Scholar 

  • Munro P.D., Barbour A. and Birkbeck T.H. 1995. Comparison of the growth and survival of larval turbot in the absence of culturable bacteria with those in the presence of Vibrio anguillarum, Vibrio alginolyticus or a marine Aeromonas sp. Appl. Env. Microbiol. 61: 4425–4428.

    Google Scholar 

  • Munro P.D., Henderson R.J., Barbour A. and Birkbeck T.H. 1999. Partial decontamination of rotifers with ultraviolet radiation: The effect of changes in the bacterial load and flora of rotifers on mortalities in start-feeding larval turbot. Aquaculture 170: 229–244.

    Google Scholar 

  • Muroga K., Higashi M. and Keetoku H. 1987. The isolation of intestinal microflora of farmed red seabream (Pagrus major) and black seabream (Acanthopagrus schelegeli) at larval and juvenile stages. Aquaculture 65: 79–88.

    Google Scholar 

  • Nicolas J.L. Robic E. and Ansquer D. 1989. Bacterial flora associated with a trophic chain consisting of microalgae, rotifers and turbot larvae: Influence of bacteria on larval survival. Aquaculture 83: 237–248.

    Google Scholar 

  • Perez-Benavente G. and Gatesoupe F.J. 1988. Bacteria associated with cultured rotifers and artemia are detrimental to larval turbot, Scophthalmus maximus (L.). Aquacult. Eng. 7: 289–293.

    Google Scholar 

  • Planas M. and Cunha I. 1999. Larviculture of marine fish: Problems and perspectives. Aquaculture 177: 171–190.

    Google Scholar 

  • Rombaunt G., Dhert Ph., Vandenberghe J., Verschuere L., Sorgeloos P. and Verstraete W. 1999. Selection of bacteria enhancing the growth rate of axenically hatched rotifers (Brachionus plicatilis). Aquaculture 176: 195–207.

    Google Scholar 

  • Rueda-Jasso R. 1996. Nutritional effect of three microalgae and one cyanobacteria on the culture of the rotifer Brachionus plicatilis Mükker: 1786. Ciencias Marinas 22: 313–328.

    Google Scholar 

  • Sera H. and Kumata M. 1972. Bacterial flora in the digestive tract of marine fish. Bacterial flora of fish, red seabream snapper and crimson sea bream, fed three kinds of diets. Nippon Suisan Gakkaishi, Bull. Jap. Soc. Sci. Fish. 38: 50–55.

    Google Scholar 

  • Verdonck L., Swings J., Kersters K., Dehasque M., Sorgeloos P. and Leger P. 1994. Variability of the microbial environment of rotifer Brachionus plicatilis and Artemia production systems. J. World Aquacult. Soc. 25: 55–59.

    Google Scholar 

  • Yu J.P., Hino A., Hirano R. and Hirayama K. 1988. Vitamin B sub(12)-producing bacteria as a nutritive complement for a culture of the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi, Bull. Jap. Soc. Sci. Fish. 54: 1873–1880.

    Google Scholar 

  • Yu J.P., Hino A., Ushiro M. and Maeda M. 1989. Function of bacteria as vitamin B12 producers during mass culture of the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi, Bull. Jap. Soc. Sci. Fish 55: 1799–1806.

    Google Scholar 

  • Yu J.P., Hino A., Noguchi T. and Wakabayashi H. 1990a. Toxicity of Vibrio alginolyticus on the survival of the rotifer Brachionus plicatilis. Nippon Suisann Gakkaishi, Bull. Jap. Soc. Sci. Fish 56: 1455–1460.

    Google Scholar 

  • Yu J.P., Hino A., Hirano R. and Hirayama K. 1990b. The role of bacteria in mass culture of the rotifer Brachionus plicatilis. In: R. Hirano and I. Hanyu (eds), The Second Asian Fisheries Forum, Proceedings of The Second Asian Fisheries Forum Tokyo. Japan, 17–22 April 1989, pp. 29–32.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio F. Martínez-Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Díaz, S.F., Álvarez-González, C., Moreno Legorreta, M. et al. Elimination of the associated microbial community and bioencapsulation of bacteria in the rotifer Brachionus plicatilis . Aquaculture International 11, 95–108 (2003). https://doi.org/10.1023/A:1024117109362

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024117109362

Navigation