Skip to main content
Log in

Flow Polynomials and Their Asymptotic Limits for Lattice Strip Graphs

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present exact calculations of flow polynomials F(G,q) for lattice strips of various fixed widths L y ≤4 and arbitrarily great lengths L x , with several different boundary conditions. Square, honeycomb, and triangular lattice strips are considered. We introduce the notion of flows per face fl in the infinite-length limit. We study the zeros of F(G,q) in the complex q plane and determine exactly the asymptotic accumulation sets of these zeros ℬ in the infinite-length limit for the various families of strips. The function fl is nonanalytic on this locus. The loci are found to be noncompact for many strip graphs with periodic (or twisted periodic) longitudinal boundary conditions, and compact for strips with free longitudinal boundary conditions. We also find the interesting feature that, aside from the trivial case L y =1, the maximal point, q cf , where ℬ crosses the real axis, is universal on cyclic and Möbius strips of the square lattice for all widths for which we have calculated it and is equal to the asymptotic value q cf =3 for the infinite square lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. T. Tutte, On the embedding of linear graphs in surfaces, Proc. London Math. Soc. (2) 51:474-483 (1950). Sadly, we must record here that W. T. Tutte died on May 2, 2002, during the final days of the completion of this manuscript.

    Google Scholar 

  2. W. T. Tutte, On dichromatic polynomials, J. Combin. Theory 2:301-320 (1967).

    Google Scholar 

  3. W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6:80-91 (1954).

    Google Scholar 

  4. W. T. Tutte, On the algebraic theory of graph colourings, J. Combin. Theory 1:15-50 (1966).

    Google Scholar 

  5. W. T. Tutte, Graph Theory, Encyclopedia of Mathematics and Its Applications, Vol. 21, G. C. Rota, ed. (Addison-Wesley, New York, 1984).

    Google Scholar 

  6. L. Ford and D. Fulkerson, Flows in Networks (Princeton University Press, Princeton, 1962).

    Google Scholar 

  7. F. Jaeger, Flows and generalized coloring theorems in graphs, J. Combin. Theory Ser. B 26:205-216 (1979).

    Google Scholar 

  8. P. Seymour, Nowhere-zero 6-flows, J. Combin. Theory Ser. B 30:130-135 (1981).

    Google Scholar 

  9. D. Younger, Integer flows, J. Graph Theory 7:349-357 (1983).

    Google Scholar 

  10. F. Y. Wu, The Potts Model, Rev. Modern Phys. 54:235-268 (1982).

    Google Scholar 

  11. J. W. Essam and C. Tsallis, The Potts model and flows: I. The pair correlation function, J. Phys. A 19:409-422 (1986).

    Google Scholar 

  12. A. de Magalhaes and J. W. Essam, The Potts model and flows: II. Many-spin correlation functions, J. Phys. A 19:1655-1679 (1986).

    Google Scholar 

  13. F. Y. Wu, Potts model and graph theory, J. Stat. Phys. 52:99-112 (1988).

    Google Scholar 

  14. F. Jaeger, Nowhere-zero flow problems, in Selected Topics in Graph Theory, Vol. 3, L. W. Beineke and R. J. Wilson, eds. (Academic, New York, 1988), pp. 71-92.

    Google Scholar 

  15. A. de Magalhaes, J. W. Essam, and F. Y. Wu, Duality relation for Potts multispin correlation functions, J. Phys. A 23:2651-2663 (1990).

    Google Scholar 

  16. G. Fan, Integer flows and cycle covers, J. Combin. Theory Ser. B 54:113-122 (1992).

    Google Scholar 

  17. T. Brylawski and J. Oxley, The Tutte polynomial and its applications, in Matroid Applications, Encyclopedia of Mathematics and Its Applications, Chap. 6, Vol. 40, N. White, ed. (Cambridge University Press, Cambridge, 1992), pp. 123-225.

    Google Scholar 

  18. N. L. Biggs, Algebraic Graph Theory, 2nd ed. (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  19. D. J. A. Welsh, Complexity: Knots, Colourings, and Counting, London Math. Soc. Lecture Note Ser. 186 (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  20. T. R. Jensen and B. Toft, Graph Coloring Problems (Wiley, New York, 1995).

    Google Scholar 

  21. C.-Q. Zhang, Integer Flows and Cycle Covers of Graphs (Dekker, New York, 1997).

    Google Scholar 

  22. B. Bollobás, Modern Graph Theory (Springer, New York, 1998).

    Google Scholar 

  23. R. C. Read and E. G. Whitehead, Chromatic polynomials of homeomorphism classes of graphs, Discrete Math. 204:337-356 (1999).

    Google Scholar 

  24. R. C. Read and E. G. Whitehead, The Tutte polynomial for homeomorphism classes of graphs, Discrete Math. 243:267-272 (2002).

    Google Scholar 

  25. J. F. Nagle, A New subgraph expansion for obtaining coloring polynomials for graphs, J. Combin. Theory Ser. B 10:42-59 (1971).

    Google Scholar 

  26. G. A. Baker, Linked-cluster expansion for the graph-vertex coloration problem, J. Combin. Theory 10:217(1971).

    Google Scholar 

  27. N. L. Biggs, R. M. Damerell, and D. A. Sands, Recursive families of graphs, J. Combin. Theory Ser. B 12:123-131 (1972).

    Google Scholar 

  28. S. Beraha and J. Kahane, Is the four-color conjecture almost false, J. Combin. Theory Ser. B 27:1-12 (1979).

    Google Scholar 

  29. S. Beraha, J. Kahane, and N. Weiss, Limits of chromatic zeros of some families of maps, J. Combin. Theory Ser. B 28:52-65 (1980).

    Google Scholar 

  30. S. Beraha, J. Kahane, and N. Weiss, Limits of zeros of recursively defined families of polynomials, Proc. Nat. Acad. Sci. U.S.A. 72:4209(1975).

    Google Scholar 

  31. S. Beraha, J. Kahane, and N. Weiss, Limits of zeros of recursively defined families of polynomials. Studies in Foundations and Combinatorics, Adv. Math., Supplementary Studies 1:213-232 (1978).

    Google Scholar 

  32. A. Sokal, Chromatic zeros are dense in the whole complex plane, cond-mat/0012369.

  33. R. C. Read, A large family of chromatic polynomials, in Proc. 3rd Caribbean Conference on Combinatorics and Computing, C. C. Cadogan, ed. (University of the West Indies Press, Barbados, 1981), pp. 23-41 (1981).

    Google Scholar 

  34. R. J. Baxter, Chromatic polynomials of large triangular lattices, J. Phys. A 20:5241-5261 (1987).

    Google Scholar 

  35. R. C. Read and G. F. Royle, in Graph Theory, Combinatorics, and Applications, Vol. 2, Y. Alavi et al., eds. (Wiley, New York, 1991), pp. 1009-1029.

    Google Scholar 

  36. J. Salas and A. Sokal, Absence of phase transition for antiferromagnetic Potts models via the Dobrushin uniqueness theorem, J. Stat. Phys. 86:551-579 (1997).

    Google Scholar 

  37. R. Shrock and S.-H. Tsai, Asymptotic limits and zeros of chromatic polynomials and ground state entropy of Potts antiferromagnets, Phys. Rev. E 55:5165-5179 (1997).

    Google Scholar 

  38. R. Shrock and S.-H. Tsai, Families of graphs with chromatic zeros lying on circles, Phys. Rev. E 56:1342-1345 (1997).

    Google Scholar 

  39. M. Roček, R. Shrock, and S.-H. Tsai, Chromatic polynomials for families of strip graphs and their asymptotic limits, Phys. A 252:505-546 (1998).

    Google Scholar 

  40. R. Shrock and S.-H. Tsai, Ground state entropy of Potts antiferromagnets on homeomorphic families of strip graphs, Phys. A 259:315-348 (1998).

    Google Scholar 

  41. M. Roček, R. Shrock, and S.-H. Tsai, Chromatic polynomials on J(∏ H) I strip graphs and their asymptotic limits, Phys. A 259:367-387 (1998).

    Google Scholar 

  42. R. Shrock and S.-H. Tsai, Families of graphs with W r({G}, q) functions that are nonanalytic at 1/q=0, Phys. Rev. E 56:3935-3943 (1997).

    Google Scholar 

  43. R. Shrock and S.-H. Tsai, Ground state degeneracy of Potts antiferromagnets: Homeomorphic classes with noncompact W boundaries, Phys. A 265:186-223 (1999).

    Google Scholar 

  44. R. Shrock and S.-H. Tsai, Ground state degeneracy of Potts antiferromagnets: Cases with noncompact W boundaries having multiple points at 1/q=0, J. Phys. A 31:9641-9665 (1998).

    Google Scholar 

  45. R. Shrock and S.-H. Tsai, Ground state entropy of the Potts antiferromagnet on cyclic strip graphs, J. Phys. A (Letts.) 32:L195-L200 (1999).

    Google Scholar 

  46. R. Shrock and S.-H. Tsai, Ground state entropy of Potts antiferromagnets on cyclic polygon chain graphs, J. Phys. A 32:5053-5070 (1999).

    Google Scholar 

  47. R. Shrock and S.-H. Tsai, Ground state degeneracy of Potts antiferromagnets on 2D lattices: Approach using infinite cyclic strip graphs, Phys. Rev. E 60:3512-3515 (1999).

    Google Scholar 

  48. R. Shrock and S.-H. Tsai, Exact partition functions for Potts antiferromagnets on cyclic lattice strips, Phys. A 275:429-449 (2000).

    Google Scholar 

  49. N. L. Biggs, Matrix method for chromatic polynomials, J. Combin. Theory Ser. B 82:19-29 (2001).

    Google Scholar 

  50. R. Shrock, T=0 partition functions for Potts antiferromagnets on Möbius strips and effects of graph topology, Phys. Lett. A 261:57-62 (1999).

    Google Scholar 

  51. N. L. Biggs and R. Shrock, T=0 partition functions for Potts antiferromagnets on square lattice strips with (twisted) periodic boundary conditions, J. Phys. A (Letts.) 32:L489-L493 (1999).

    Google Scholar 

  52. R. Shrock, Chromatic polynomials and their zeros and asymptotic limits for families of graphs, in Proceedings of the 1999 British Combinatorial Conference, Discrete Math. 231:421-446 (2001).

    Google Scholar 

  53. A. Sokal, Bounds on the complex zeros of (di)chromatic polynomials and Potts-model partition functions, Combin. Probab. Comput. 10:41-77 (2001).

    Google Scholar 

  54. S.-C. Chang and R. Shrock, Ground state entropy of the Potts antiferromagnet with next-nearest-neighbor spin-spin couplings on strips of the square lattice, Phys. Rev. E 62:4650-4664 (2000).

    Google Scholar 

  55. S.-C. Chang and R. Shrock, Ground state entropy of the Potts antiferromagnet on strips of the square lattice, Phys. A 290:402-430 (2001).

    Google Scholar 

  56. J. Salas and A. Sokal, Transfer matrices and partition-function zeros for antiferromagnetic Potts models I. General theory and square-lattice chromatic polynomial, J. Stat. Phys. 104:609-699 (2001).

    Google Scholar 

  57. S.-C. Chang and R. Shrock, Structural properties of Potts model partition functions and chromatic polynomials for lattice strips, Phys. A 296:131-182 (2001).

    Google Scholar 

  58. S.-C. Chang and R. Shrock, T=0 partition functions for Potts antiferromagnets on lattice strips with fully periodic boundary conditions, Phys. A 292:307-345 (2001).

    Google Scholar 

  59. S.-C. Chang and R. Shrock, Ground state entropy of the Potts antiferromagnet on triangular lattice strips, Ann. Phys. 290:124-155 (2001).

    Google Scholar 

  60. J. Jacobsen and J. Salas, Transfer matrices and partition-function zeros for antiferromagnetic Potts models II. Extended results for square-lattice chromatic polynomial, J. Stat. Phys. 104:701-723 (2001).

    Google Scholar 

  61. J. Salas and R. Shrock, Exact T=0 partition functions for Potts antiferromagnets on sections of the simple cubic lattice, Phys. Rev. E 64:011111(2001).

    Google Scholar 

  62. S.-C. Chang, Chromatic polynomials for lattice strips with cyclic boundary conditions, Phys. A 296:495-522 (2001).

    Google Scholar 

  63. S.-C. Chang and R. Shrock, Potts model partition functions for self-dual families of graphs, Phys. A 301:301-329 (2001).

    Google Scholar 

  64. N. L. Biggs, Chromatic polynomials and representations of the symmetric group, Algebraic Graph Theory Workshop, Edinburgh (July 2001), LSE report LSE-CDAM-01-02 (2001).

  65. N. L. Biggs, M. Klin, and P. Reinfeld, Algebraic methods for chromatic polynomials, Algebraic Graph Theory Workshop, Edinburgh (July, 2001), LSE report LSE-CDAM-01-06 (2001).

  66. S.-C. Chang, Exact chromatic polynomials for toroidal chains of complete graphs, Phys. A 313:397-426 (2002).

    Google Scholar 

  67. S.-C. Chang and R. Shrock, General structural results for Potts model partition functions on lattice strips, Phys. A 316:335-379 (2002).

    Google Scholar 

  68. J. Jacobsen, J. Salas, and A. Sokal, Transfer matrices and partition-function zeros for antiferromagnetic Potts models III. Triangular-lattice chromatic polynomial, cond-mat/0204587.

  69. S.-C. Chang and R. Shrock, Tutte polynomials and related asymptotic limiting functions for recursive families of graphs, Adv. in Appl. Math., in press (math-ph/0112061).

  70. R. Shrock, Exact Potts model partition functions on ladder graphs, Phys. A 283:388-446 (2000).

    Google Scholar 

  71. S.-C. Chang and R. Shrock, Exact Potts model partition functions on wider arbitrary-length strips of the square lattice, Phys. A 296:234-288 (2001).

    Google Scholar 

  72. S.-C. Chang and R. Shrock, Exact Potts model partition functions on strips of the triangular lattice, Phys. A 286:189-238 (2000).

    Google Scholar 

  73. S.-C. Chang and R. Shrock, Exact Potts model partition functions on strips of the honeycomb lattice, Phys. A 296:183-233 (2001).

    Google Scholar 

  74. S.-C. Chang and R. Shrock, Exact partition function for the Potts model with next-nearest neighbor couplings on strips of the square lattice, Internat. J. Modern Phys. B 15:443-478 (2001).

    Google Scholar 

  75. S.-C. Chang and R. Shrock, Complex-temperature phase diagrams for the q-state Potts model on self-dual families of graphs and the nature of the q→∞ limit, Phys. Rev. E 64:066116(2001).

    Google Scholar 

  76. S.-C. Chang, J. Salas, and R. Shrock, Exact Potts model partition function for strips of the square lattice, J. Stat. Phys. 107:1207-1253 (2002).

    Google Scholar 

  77. C. Fortuin and P. Kasteleyn, On the random cluster model. I. Introduction and relation to other models, Physica 57:536-564 (1972).

    Google Scholar 

  78. K. Appel and W. Haken, Every map is four colorable, part I: Discharging, Illinois J. Math. 21:429-490 (1977).

    Google Scholar 

  79. K. Appel, W. Haken, and J. Koch, Every map is four colorable, part II: Reducibility, Illinois J. Math. 21:491-567 (1977).

    Google Scholar 

  80. B. Grünbaum and G. Shephard, Tilings and Patterns (Freeman, New York, 1987).

    Google Scholar 

  81. R. Shrock and S.-H. Tsai, Lower bounds and series for the ground state entropy of the Potts antiferromagnet on Archimedean lattices and their duals, Phys. Rev. E 56:4111-4124 (1997).

    Google Scholar 

  82. N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/∼njas/sequences/.

  83. F. Bernhart, Catalan, Motzkin, and Riordan numbers, Discrete Math. 204:73-112 (1999).

    Google Scholar 

  84. R. Shrock and S.-H. Tsai, Upper and lower bounds for ground state entropy of antiferromagnetic Potts models, Phys. Rev. E 56:2733-2737 (1997).

    Google Scholar 

  85. R. Shrock and S.-H. Tsai, Ground state entropy of Potts antiferromagnets and the approach to the 2d thermodynamic limit, Phys. Rev. E 58:4332-4339 (1998), cond-mat/9808057.

    Google Scholar 

  86. A. Lenard, unpublished, as credited in E. H. Lieb, Residual entropy of square ice, Phys. Rev. 162:162-171 (1967).

    Google Scholar 

  87. R. Shrock and S.-H. Tsai, Ground state entropy and the q=3 Potts antiferromagnet on the honeycomb lattice, J. Phys. A 30:495-500 (1997).

    Google Scholar 

  88. R. J. Baxter, Critical antiferromagnetic square-lattice Potts model, Proc. Roy. Soc. London Ser. A 383:43-54 (1982).

    Google Scholar 

  89. The results obtained in ref. 88 involved a mapping from the Potts model to a six-vertex model. A complication pertaining to a mismatch between the boundary conditions for the Potts and vertex model was noted there. See also H. Saleur, Zeros of chromatic polynomials: A new approach to Beraha conjecture using quantum groups, Commun. Math. Phys. 132:657-679 (1990); and H. Saleur, The antiferromagnetic Potts model in two dimensions: Berker-Kadanoff phase, antiferromagnetic transition, and the role of Beraha numbers, Nuclear Phys. B 360:219-263 (1991).

    Google Scholar 

  90. D. Kim and R. Joseph, Exact transition temperature of the Potts model with q states per site for the triangular and honeycomb lattices, J. Phys. C 7:L167-L169 (1974).

    Google Scholar 

  91. P. Martin and J. M. Maillard, Zeros of the partition function for the triangular lattice 3-state Potts model, J. Phys. A 19:L547-L551 (1986).

    Google Scholar 

  92. C. N. Chen, C. K. Hu, and F. Y. Wu, Partition function zeros of the square lattice Potts model, Phys. Rev. Lett. 76:169-172 (1996).

    Google Scholar 

  93. F. Y. Wu, G. Rollet, H. Y. Huang, J. M. Maillard, C. K. Hu, and C. N. Chen, Directed compact lattice animals, restricted partitions of an integer, and the infinite-state Potts model, Phys. Rev. Lett. 76:173-176 (1996).

    Google Scholar 

  94. V. Matveev and R. Shrock, Complex-temperature singularities in Potts models on the square lattice, Phys. Rev. E 54:6174-6185 (1996).

    Google Scholar 

  95. H. Feldmann, R. Shrock, and S.-H. Tsai, A mapping relating complex and physical temperatures in the 2D q-state Potts model and some applications, J. Phys. A (Lett.) 30:L663-668 (1997).

    Google Scholar 

  96. H. Feldmann, R. Shrock, and S.-H. Tsai, Complex-temperature partition function zeros of the Potts model on the honeycomb and kagomé lattices, Phys. Rev. E 57:1335-1346 (1998).

    Google Scholar 

  97. H. Feldmann, A. J. Guttmann, I. Jensen, R. Shrock, and S.-H. Tsai, Study of the Potts model on the honeycomb and triangular lattices: Low-temperature series and partition function zeros, J. Phys. A 31:2287-2310 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, SC., Shrock, R. Flow Polynomials and Their Asymptotic Limits for Lattice Strip Graphs. Journal of Statistical Physics 112, 815–879 (2003). https://doi.org/10.1023/A:1023836311251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023836311251

Navigation