Skip to main content
Log in

Slow Motion and Metastability for a Nonlocal Evolution Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we consider a nonlocal evolution equation in one dimension, which describes the dynamics of a ferromagnetic system in the mean field approximation. In the presence of a small magnetic field, it admits two stationary and homogeneous solutions, representing the stable and metastable phases of the physical system. We prove the existence of an invariant, one dimensional manifold connecting the stable and metastable phases. This is the unstable manifold of a distinguished, spatially nonhomogeneous, stationary solution, called the critical droplet.(4, 10) We show that the points on the manifold are droplets longer or shorter than the critical one, and that their motion is very slow in agreement with the theory of metastable patterns. We also obtain a new proof of the existence of the critical droplet, which is supplied with a local uniqueness result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. W. Bates, P. C. Fife, X. Ren, and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal. 138:105-136 (1997).

    Google Scholar 

  2. P. Buttà, On the validity of an Einstein relation in models of interface dynamics, J. Stat. Phys. 72:1401-1406 (1993).

    Google Scholar 

  3. X. Chen, Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations 2:125-160 (1997).

    Google Scholar 

  4. A. Chmaj and X. Ren, Homoclinic solutions of an integral equation: existence and stability, J. Differential Equation 155:17-43 (1999).

    Google Scholar 

  5. J. Carr and R. Pego, Metastable patterns in solutions of u t2 u xxf(u), Proc. Roy. Soc. Edinburgh Sect. A 116:133-160 (1990).

    Google Scholar 

  6. J. Carr and R. Pego, Invariant manifolds for metastable patterns in u t2 u xxf(u), Comm. Pure Appl. Math. 42:523-576 (1989).

    Google Scholar 

  7. M. Cassandro, A. Galves, E. Olivieri, and E. Vares, Metastable behavior of stochastic dynamics: A pathwise approach, J. Stat. Phys. 35:603-634 (1984).

    Google Scholar 

  8. A. De Masi, T. Gobron, and E. Presutti, Traveling fronts in non-local evolution equations, Arch. Rational Mech. Anal. 132:143-205 (1995).

    Google Scholar 

  9. A. De Masi, E. Olivieri, and E. Presutti, Spectral properties of integral operators in problems of interface dynamics and metastability, Markov Process. Related Fields 4: 27-112 (1998).

    Google Scholar 

  10. A. De Masi, E. Olivieri, and E. Presutti, Critical droplet for a nonlocal mean field equation, Markov Process. Related Fields 6:439-471 (2000).

    Google Scholar 

  11. A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, Glauber evolution with Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics, Nonlinearity 7:1-67 (1994).

    Google Scholar 

  12. A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, Stability of the interface in a model of phase separation, Proc. Roy. Soc. Edinburgh Sect. A 124:1013-1022 (1994).

    Google Scholar 

  13. A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, Uniqueness and global stability of the instanton in nonlocal evolution equations, Rend. Mat. Appl. (7) 14:693-723 (1994).

    Google Scholar 

  14. J.-P. Eckmann and J. Rougemont, Coarsening by Ginzburg-Landau dynamics, Comm. Math. Phys. 199:441-470 (1998).

    Google Scholar 

  15. G. Fusco and J. K. Hale, Slow motion manifolds, dormant instability and singular perturbations, J. Dynam. Differential Equations 1:75-94 (1989).

    Google Scholar 

  16. A. Galves, E. Olivieri, and E. Vares, Metastability for a class of dynamical systems subject to small random perturbations, Ann. Probab. 15:1288-1305 (1987).

    Google Scholar 

  17. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer Lectures Notes in Mathematics, Vol. 840 (Springer-Verlag, Berlin/New York, 1981).

    Google Scholar 

  18. M. Kac, G. Uhlenbeck, and P. C. Hemmer, On the van der Waals theory of vapor-liquid equilibrium. I. Discussion of a one dimensional model, J. Math. Phys. 4:216-228 (1963); II. Discussion of the distribution functions, J. Math. Phys. 4:229-247 (1963); III. Discussion of the critical region, J. Math. Phys. 5:60-74 (1964).

    Google Scholar 

  19. J. L. Lebowitz and O. Penrose, Rigorous treatment of the van der Waals Maxwell theory of the liquid vapour transition, J. Math. Phys. 7:98-113 (1966).

    Google Scholar 

  20. J. L. Lebowitz and O. Penrose, Rigorous treatment of metastable states in the van der Waals Maxwell theory, J. Stat. Phys. 3:211-236 (1971).

    Google Scholar 

  21. E. Olivieri and E. Scoppola, Markov chains with exponentially small transition probabilities: first exit problem from a general domain. I. The reversible case, J. Stat. Phys. 79:613-647 (1995).

    Google Scholar 

  22. E. Orlandi and L. Triolo, Travelling fronts in nonlocal models for phase separation in an external field, Proc. Roy. Soc. Edinburgh Sect. A 127:823-835 (1997).

    Google Scholar 

  23. H. Spohn, Interface motion in models with stochastic dynamics, J. Stat. Phys. 71:1081-1132 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buttà, P., de Masi, A. & Rosatelli, E. Slow Motion and Metastability for a Nonlocal Evolution Equation. Journal of Statistical Physics 112, 709–764 (2003). https://doi.org/10.1023/A:1023832210342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023832210342

Navigation