Skip to main content
Log in

Nonlinear Transport in Inelastic Maxwell Mixtures Under Simple Shear Flow

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Boltzmann equation for inelastic Maxwell models is used to analyze nonlinear transport in a granular binary mixture in the steady simple shear flow. Two different transport processes are studied. First, the rheological properties (shear and normal stresses) are obtained by solving exactly the velocity moment equations. Second, the diffusion tensor of impurities immersed in a sheared inelastic Maxwell gas is explicitly determined from a perturbation solution through first order in the concentration gradient. The corresponding reference state of this expansion corresponds to the solution derived in the (pure) shear flow problem. All these transport coefficients are given in terms of the restitution coefficients and the parameters of the mixture (ratios of masses, concentration, and sizes). The results are compared with those obtained analytically for inelastic hard spheres in the first Sonine approximation and by means of Monte Carlo simulations. The comparison between the results obtained for both interaction models shows a good agreement over a wide range values of the parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. J. Brey, J. W. Dufty, and A. Santos, Dissipative dynamics for hard spheres, J. Stat. Phys. 87:1051-1066 (1997); T. P. C. van Noije, M. H. Ernst, and R. Brito, Ring kinetic theory for an idealized granular gas, Physica A 251:266-283 (1998).

    Google Scholar 

  2. J. J. Brey, J. W. Dufty, C. S. Kim, and A. Santos, Hydrodynamics for granular flow at low density, Phys. Rev. E 58:4638-4653 (1998).

    Google Scholar 

  3. V. Garzó and J. W. Dufty, Dense fluid transport for inelastic hard spheres, Phys. Rev. E 59:5895-5911 (1999).

    Google Scholar 

  4. V. Garzó and J. M. Montanero, Transport coefficients of a heated granular gas, Physica A 313:336-356 (2002).

    Google Scholar 

  5. V. Garzó and J. W. Dufty, Hydrodynamics for a granular mixture at low density, Phys. Fluids 14:1476-1490 (2002).

    Google Scholar 

  6. J. Lutsko, J. J. Brey, and J. W. Dufty, Diffusion in a granular fluid. II. Simulation, Phys. Rev. E 65:051304(2002).

    Google Scholar 

  7. J. J. Brey, M. J. Ruiz-Montero, and D. Cubero, On the validity of linear hydrdodynamics for low-density granular flows described by the Boltzmann equation, Europhys. Lett. 48:359-364 (1999).

    Google Scholar 

  8. J. M. Montanero and V. Garzó, Shear viscosity for a heated granular binary mixture at low-density, Phys. Rev. E 67:021308(2003).

    Google Scholar 

  9. M. H. Ernst, Non-linear model-Boltzmann equations and exact solutions, Phys. Rep. 78:1-171 (1981).

    Google Scholar 

  10. C. Truesdell, On the pressures and the flux of energy in a gas according to Maxwell's kinetic theory, II, J. Rat. Mech. Anal. 5:55-128 (1956).

    Google Scholar 

  11. C. Truesdell and R. G. Muncaster, Fundamentals of Maxwell's Kinetic Theory of a Simple Monatomic Gas (Academic Press, New York, 1980).

    Google Scholar 

  12. A. Santos and V. Garzó, Exact non-linear transport from the Boltzmann equation, in Rarefied Gas Dynamics 19, J. Harvey and G. Lord, eds. (Oxford University Press, Oxford, 1995), pp. 13-22.

    Google Scholar 

  13. W. Loose and S. Hess, Velocity distribution function of a streaming gas via nonequilibrium molecular dynamics, Phys. Rev. Lett. 58:2443-2445 (1987); W. Loose, The constant-temperature constraint in the nonequilibrium molecular dynamics and the non-Newtonian viscosity coefficient of gases, Phys. Lett. A 128:39-44; J. Gómez Ordoñez, J. J. Brey, and A. Santos, Shear-rate dependence of the viscosity for dilute gases, Phys. Rev. A 39:3038-3040 (1989).

    Google Scholar 

  14. E. Ben-Naim and P. L. Krapivsky, Multiscaling in inelastic collisions, Phys. Rev. E 61:R5-R8 (2000).

    Google Scholar 

  15. A. V. Bobylev, J. A. Carrillo, and I. M. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Stat. Phys. 98:743-773 (2000).

    Google Scholar 

  16. J. A. Carrillo, C. Cercignani, and I. M. Gamba, Steady states of a Boltzmann equation for driven granular media, Phys. Rev. E 62:7700-7707 (2000).

    Google Scholar 

  17. M. H. Ernst and R. Brito, Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails, J. Stat. Phys. 109:407-432 (2002).

    Google Scholar 

  18. A. Baldasarri, U. M. B. Marconi, and A. Puglisi, Influence of correlations of the velocity statistics of scalar granular gases, Europhys. Lett. 58:14-20 (2002).

    Google Scholar 

  19. P. L. Krapivsky and E. Ben-Naim, Scaling, multiscaling, and nontrivial exponents in inelastic collision processes, Phys. Rev. E 66:011309(2002).

    Google Scholar 

  20. M. H. Ernst and R. Brito, Driven inelastic Maxwell models with high energy tails, Phys. Rev. E 65:040301(R)(2002).

    Google Scholar 

  21. A. V. Bobylev and C. Cercignani, Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions, J. Stat. Phys. 110:333-375 (2003).

    Google Scholar 

  22. A. V. Bobylev, C. Cercignani, and G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, J. Stat. Phys. 111:403-416 (2003).

    Google Scholar 

  23. A. Santos, Transport coefficients of d-dimensional inelastic Maxwell models, Physica A 321:442-466 (2003).

    Google Scholar 

  24. H. Hayakawa, Hydrodynamics for inelastic Maxwell model, cond-mat/0209630.

  25. C. Cercignani, Shear flow of a granular fluid, J. Stat. Phys. 102:1407-1415 (2001).

    Google Scholar 

  26. U. M. B. Marconi and A. Puglisi, Mean-field model of free-cooling inelastic mixtures, Phys. Rev. E 65:051305(2002); Steady state properties of a mean field model of driven inelastic mixtures, Phys. Rev. E 66:011301(2002).

    Google Scholar 

  27. E. Ben-Naim and P. L. Krapivsky, Impurity in a granular fluid, Eur. Phys. J. E 8:507-515 (2002).

    Google Scholar 

  28. J. M. Montanero and V. Garzó, Rheological properties in a low-density granular mixture, Phys. A 310:17-38 (2002).

    Google Scholar 

  29. V. Garzó, Tracer diffusion in granular shear flows, Phys. Rev. E 66:021308(2002).

    Google Scholar 

  30. J. M. Montanero and V. Garzó, Energy nonequipartition in a sheared granular mixture, Mol. Sim. (to be published) and cond-mat/0204205.

  31. A. V. Bobylev and C. Cercignani, Moment equations for a granular material in a thermal bath, J. Stat. Phys. 106:547-567 (2002).

    Google Scholar 

  32. R. Clelland and C. Hrenya, Simulations of a binary-sized mixture of inelastic grains in rapid shear flow, Phys. Rev. E 65:031301(2002).

    Google Scholar 

  33. R. D. Wildman and D. J. Parker, Coexistence of two granular temperatures in binary vibrofluidized beds, Phys. Rev. Lett. 88:064301(2002); K. Feitosa and N. Menon, Breakdown of energy equipartition in a 2D binary vibrated granular gas, Phys. Rev. Lett. 88:198301(2002).

    Google Scholar 

  34. V. Garzó and J. W. Dufty, Homogeneous cooling state for a granular mixture, Phys. Rev. E 60:5706-5713 (1999); J. M. Montanero and V. Garzó, Monte Carlo simulation of the homogeneous cooling state for a granular mixture, Granular Matter 4:17-24 (2002).

    Google Scholar 

  35. J. W. Dufty and V. Garzó, Mobility and diffusion in granular fluids, J. Stat. Phys. 105:723-744 (2001).

    Google Scholar 

  36. S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  37. V. Garzó, A. Santos, and J. J. Brey, Influence of nonconservative external forces on self-diffusion in dilute gases. Physica A 163:651-671 (1990); V. Garzó and M. López de Haro, Tracer diffusion in shear flow, Phys. Rev. A 44:1397-1400 (1991); Kinetic models for uniform shear flow, Phys. Fluids A 4:1057-1069 (1992); C. Marín and V. Garzó, Mutual diffusion in a binary mixture under shear flow, Phys. Rev. E 57:507-513 (1998).

    Google Scholar 

  38. C. S. Campbell, Self-diffusion in granular shear flows, J. Fluid Mech. 348:85-101) (1997).

    Google Scholar 

  39. A. V. Bobylev, M. Groppi, and G. Spiga, Approximate solutions to the problem of stationary shear flow of granular material, Eur. J. Mech. B Fluids 21:91-103 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garzó, V. Nonlinear Transport in Inelastic Maxwell Mixtures Under Simple Shear Flow. Journal of Statistical Physics 112, 657–683 (2003). https://doi.org/10.1023/A:1023828109434

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023828109434

Navigation