Skip to main content
Log in

Finite-Time Lyapunov Exponents for Products of Random Transformations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

I show how continuous products of random transformations constrained by a generic group structure can be studied by using Iwasawa's decomposition into “angular,” “diagonal,” and “shear” degrees of freedom. In the case of a Gaussian process a set of variables, adapted to the Iwasawa decomposition and still having a Gaussian distribution, is introduced and used to compute the statistics of the finite-time Lyapunov spectrum of the process. The variables also allow to show the exponential freezing of the “shear” degrees of freedom, which contain information about the Lyapunov eigenvectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Arnold and W. Kliemann, Large deviations of linear stochastic differential equations, in Stochastic Differential Systems Proceedings, Eisenach, 1986, H. J. Engelbert and W. Schmidt, eds., Lecture Notes in Control and Information Sciences, Vol. 96 (Springer, Berlin, 1987), pp. 117–151.

    Google Scholar 

  2. For a review of results, see, L. Arnold and V. Wihstutz, eds., Lyapunov Exponents, Proceedings, Bremen, 1984, Lecture Notes in Mathematics, Vol. 1186 (Springer, Berlin, 1986).

  3. For a review of results, see, C. W. J. Beenakker, Random-matrix theory of quantum transport, Rev. Mod. Phys. 69:731(1997).

  4. C. W. J. Beenakker and B. Rejaei, Nonlogarithmic repulsion of transmission eigenvalues in a disordered wire, Phys. Rev. Lett. 71:3689–3692 (1993).

    Google Scholar 

  5. G. Benettin, Power law behaviour of Lyapunov exponents in some conservative dynamical systems, Phys. D 13:211–213 (1984).

    Google Scholar 

  6. G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them, Meccanica 15:9(1980).

    Google Scholar 

  7. D. Bernard, K. Gawędzki, and A. Kupiainen, Slow modes in passive advection, J. Stat. Phys. 90:519(1998).

    Google Scholar 

  8. A. S. Cattaneo, A. Gamba, and I. Kolokolov, Statistics of the one-electron current in a one-dimensional mesoscopic ring at arbitrary magnetic fields, J. Stat. Phys. 76:1065–1074 (1994).

    Google Scholar 

  9. M. Caselle, Distribution of transmission eigenvalues in disordered wires, Phys. Rev. Lett. 74:2776–2779 (1995).

    Google Scholar 

  10. M. Chertkov, G. Falkovich, and I. Kolokolov, Intermittent dissipation of passive scalar in turbulence, Phys. Rev. Lett. 80:2121–2124 (1998).

    Google Scholar 

  11. M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Statistics of a passive scalar advected by a large scale two-dimensional velocity field: Analytic solution, Phys. Rev. E 51:5609–5627 (1995).

    Google Scholar 

  12. M. Chertkov, G. Falkovich, I. Kolokolov, and M. Vergassola, Small-scale turbulent dynamo, Phys. Rev. Lett. 83:4065(1999).

    Google Scholar 

  13. M. Chertkov, A. Gamba, and I. Kolokolov, Exact field-theoretical description of passive scalar convection in an n-dimensional long range velocity field, Phys. Lett. A 192:435–443 (1994).

    Google Scholar 

  14. For a review of results, see, A. Crisanti, G. Paladin, and A. Vulpiani, Products of Random Matrices in Statistical Physics (Springer-Verlag, Berlin/Heidelberg, 1993).

  15. O. N. Dorokhov, Transmission coefficient and the localization length of an electron in N bound disordered chains, JETP Lett. 36:318–321 (1982).

    Google Scholar 

  16. J.-P. Eckmann and O. Gat, Hydrodynamic Lyapunov modes in translation invariant systems, J. Stat. Phys. 98:775–798 (2000).

    Google Scholar 

  17. For a review of results, see, G. Falkovich, K. Gawędzki, and M. Vergassola, Particles and fields in fluid turbulence, Rev. Modern Phys. 73:913–975 (2001).

  18. G. Falkovich, V. Kazakov, and V. Lebedev, Particle dispersion in a multidimensional random flow with arbitrary temporal correlations, Phys. A 249:36–46 (1998).

    Google Scholar 

  19. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  20. A. Gamba and I. Kolokolov, The Lyapunov spectrum of a continuous product of random matrices, J. Stat. Phys. 85:489–499 (1996).

    Google Scholar 

  21. A. Gamba and I. Kolokolov, Dissipation statistics of a passive scalar in a multidimensional smooth flow, J. Stat. Phys. 94:759–777 (1999).

    Google Scholar 

  22. I. M. Gel'fand and A. M. Yaglom, Integration in function spaces and its applications in quantum physics, J. Math. Phys. 1:48(1960).

    Google Scholar 

  23. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Academic Press, 1978).

  24. S. Helgason, Groups and Geometric Analysis (Academic Press, 1984).

  25. A. Hüffman, Disordered wires from a geometric viewpoint, J. Phys. A 23 :5733–5744 (1990).

    Google Scholar 

  26. K. Iwasawa, On some types of topological groups, Ann. of Math. 50:507–558 (1949).

    Google Scholar 

  27. A. W. Knapp, Representation Theory of Semisimple Groups (Princeton University Press, 1986).

  28. A. W. Knapp, Lie Groups Beyond an Introduction (Birkhäuser, 1996).

  29. I. V. Kolokolov, Functional representation for the partition function of the quantum Heisenberg ferromagnet, Phys. Lett. A 114:99–104 (1986).

    Google Scholar 

  30. I. V. Kolokolov, Functional integration for quantum magnets: new method and new results, Ann. Physics 202:165–185 (1990).

    Google Scholar 

  31. I. V. Kolokolov, The method of functional integration for one-dimensional localization, higher correlators, and the average current flowing in a mesoscopic ring in an arbitrary magnetic field, JETP 76:1099(1993).

    Google Scholar 

  32. V. I. Oseledec, The multiplicative ergodic theorem. The Lyapunov characteristic numbers of dynamical systems, Trans. Moscow Math. Soc. 19:197–231 (1968).

    Google Scholar 

  33. G. Paladin and A. Vulpiani, Scaling law and asymptotic distribution of Lyapunov exponents in conservative dynamical systems with many degrees of freedom, J. Phys. A 19:1881(1986).

    Google Scholar 

  34. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamba, A. Finite-Time Lyapunov Exponents for Products of Random Transformations. Journal of Statistical Physics 112, 193–218 (2003). https://doi.org/10.1023/A:1023631704909

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023631704909

Navigation