Skip to main content
Log in

Expectation Values of Observables in Time-Dependent Quantum Mechanics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Let U(t) be the evolution operator of the Schrödinger equation generated by a Hamiltonian of the form H 0(t) + W(t), where H 0(t) commutes for all twith a complete set of time-independent projectors \(\{ P_j \} _{j = 1}^\infty \). Consider the observable A=∑j P jλjwhere λ j j μ, μ>0, for jlarge. Assuming that the “matrix elements” of W(t) behave as EquationSource % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaauWaaeaaca% WGqbWaaSbaaSqaaiaadQgaaeqaaOGaam4vaiaacIcacaWG0bGaaiyk% aiaadcfadaWgaaWcbaGaam4AaaqabaaakiaawMa7caGLkWoacqWIdj% YocaaIXaGaai4lamaaemaabaGaamOAaiabgkHiTiaadUgaaiaawEa7% caGLiWoadaahaaWcbeqaaiaadchaaaGccaGGSaGaamOAaiabgcMi5k% aadUgaaaa!4E46! for p>0 large enough, we prove estimates on the expectation value \(\langle U(t)\phi|AU(t)\phi\rangle\equiv\langle A\rangle_\phi(t)\)for large times of the type EquationSource % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyykJeUaam% yqaiabgQYiXpaaBaaaleaaruqtV52B0LhCLbYqVj3CPzxyaGqbaiaa% -z8aaeqaaOGaaiikaiaadshacaGGPaGaeyizImQaam4yaiaadshada% ahaaWcbeqaaiabes7aKbaaaaa!49E5! where δ>0 depends on pand μ. Typical applications concern the energy expectation 〈H0ϕ(t) in case H 0(t) ≡ H 0or the expectation of the position operator 〈x2ϕ(t) on the lattice where W(t) is the discrete Laplacian or a variant of it and H 0(t) is a time-dependent multiplicative potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. M. Barbaroux, J. M. Combes, and R. Montcho, Remarks on the Relation between quantum Dynamics and fractal Spectra, to appear in J. Math. Anal. Appl.(1997).

  2. J. Bellissard, Stability and Instability in Quantum Mechanics in Trends and developments in the eighties, S. Albeverio, Ph. Blanchard, eds., World Scientific, Singapore, 1985.

    Google Scholar 

  3. L. Bunimovich, H. R. Jauslin, J. L. Lebowitz, A. Pellegrinotti, and P. Nielaba, Diffusive Energy Growth in Classical and Quantum Driven Oscillators, J. Stat. Phys. 62:793-817 (1991).

    Google Scholar 

  4. M. Combescure, Recurrent versus diffusive dynamics for a kicked quantum oscillator, Ann. Inst. H. Poincaré 57:67-87 (1992).

    Google Scholar 

  5. M. Combescure, Recurrent versus diffusive quantum behavior for time-dependent hamiltonians, In Operator Theory: Advances and Applications, Vol. 57, Birkhauser, Verlag, Basel, 1992.

    Google Scholar 

  6. R. Del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations and localization, to appear in J. d'An. Math.

  7. S. Debievre and G. Forni, Transport Properties of kicked and quasi-periodic Hamiltonians, Preprint Université de Lille (1997).

  8. G. Gallavotti, Elements of classical mechanics, Springer Texts and Monographs in Physics (1983).

  9. I. Guarneri, Singular properties of quantum diffusion on discrete lattices, Europhysics Letters 10(2):95-100 (1989).

    Google Scholar 

  10. I. Guarneri and G. Mantica, On the asymptotic properties of quantum dynamics in the presence of the fractal spectrum, Ann. Inst. H. Poincaré, Sect. A 61:369-379 (1994).

    Google Scholar 

  11. G. Hagedorn, M. Loss, and J. Slawny, Non stochasticity of time-dependent quadratic hamiltonians and spectra of cononical transformation, J. Phys. A. 19:521-531 (1986).

    Google Scholar 

  12. J. Howland, Floquet operator with singular spectrum II, Ann. Inst. H. Poincaré 49:325-334 (1989).

    Google Scholar 

  13. J. Howland, Quantum Stability in Schrödinger operators, the quantum mechanical many bodies problem, E. Balslev, ed., Springer Lecture Notes in Physics 403(1992), pp. 100-122.

  14. H. R. Jauslin and J. L. Lebowitz, Spectral and stability aspects of quantum chaos, Chaos 1:114-137 (1991).

    Google Scholar 

  15. A. Joye, Upper bounds for the energy expectation in time-dependent quantum mechanics, J. Stat. Phys. 85:575-606 (1996).

    Google Scholar 

  16. Y. Last, Quantum dynamics and decomposition of singular continuous spectra, J. Funct. Anal. 142:406-445 (1996).

    Google Scholar 

  17. G. Nenciu, Adiabatic Theory: Stability of Systems with Increasing Gaps, CPT-95/P.3171 preprint (1995).

  18. C. R. de Oliveira, Some remarks concerning stability for nonstationary quantum systems, J. Stat. Phys. 78:1055-1066 (1995).

    Google Scholar 

  19. C. Radin and B. Simon, Invariant domains for the time-dependent Schrödinger equation, J. Diff. Eq. 29:289-296 (1978).

    Google Scholar 

  20. B. Simon, Absence of Ballistic Motion, Commun. Math. Phys. 132:209-212 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbaroux, J.M., Joye, A. Expectation Values of Observables in Time-Dependent Quantum Mechanics. Journal of Statistical Physics 90, 1225–1249 (1998). https://doi.org/10.1023/A:1023279311564

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023279311564

Navigation