Skip to main content
Log in

An Ultimate Frustration in Classical Lattice-Gas Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A classical lattice-gas model is called frustrated if not all of its interactions can attain their minima simultaneously. The antiferromagnetic Ising model on the triangular lattice is a standard example.(1, 29) However, in all such models known so far, one could always find nonfrustrated interactions having the same ground-state configurations. Here we constructed a family of classical lattice-gas models with finite-range, translation-invariant, frustrated interactions and with unique ground-state measures which are not unique ground-state measures of any finite-range, translation-invariant, nonfrustrated interactions.

Our ground-state configurations are two-dimensional analogs of one-dimensional, “most homogeneous,”(13) nonperiodic ground-state configurations of infinite-range, convex, repulsive interactions in models with devil's staircases.

Our models are microscopic (toy) models of quasicrystals which cannot be stabilized by matching rules alone; competing interactions are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Toulouse, Commun. Phys. 2:115 (1977).

    Google Scholar 

  2. M. Born, On the stability of crystal lattices, Proc. Cambridge Phil. Soc. 36:160 (1940).

    Google Scholar 

  3. G. E. Uhlenbeck, in Statistical Mechanics; Foundations and Applications, T. A. Bak, ed. (Benjamin, New York, 1967), p. 581.

    Google Scholar 

  4. G. E. Uhlenbeck, in Fundamental Problems in Statistical Mechanics II, E. G. D. Cohen, ed. (Wiley, New York, 1968), p. 16.

    Google Scholar 

  5. S. G. Brush, Statistical Physics and the Atomic Theory of Matter, from Boyle and Newton to Landau and Onsager (Princeton University Press, Princeton, 1983), p. 277.

    Google Scholar 

  6. P. W. Anderson, Basic Notions of Condensed Matter Physics (Benjamin, Menlo Park, 1984), p. 12.

    Google Scholar 

  7. B. Simon, in Perspectives in Mathematics: Anniversary of Oberwolfach 1984 (Birkhäuser-Verlag, Bassel, 1984), p. 442.

    Google Scholar 

  8. C. Radin, Low temperature and the origin of crystalline symmetry, Int. J. Mod. Phys. B1:1157 (1987).

    Google Scholar 

  9. D. Schechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53:1951 (1984).

    Google Scholar 

  10. F. Axel and D. Gratias, eds., Beyond Quasicrystals (Les Houches, 1994) (Springer, Berlin, 1994).

    Google Scholar 

  11. C. Radin, Global order from local sources, Bull. Amer. Math. Soc. 25:335 (1991).

    Google Scholar 

  12. A. C. D. van Enter, R. Fernandez, and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: scope and limitations of Gibbsian theory, J. Stat. Phys. 72:879 (1993).

    Google Scholar 

  13. J. Hubbard, Generalized Wigner lattices in one-dimension and some applications to tetracyanoquinodimethane (TCNQ) salts, Phys. Rev. 17:494 (1978).

    Google Scholar 

  14. P. Bak and R. Bruinsma, One-dimensional Ising model and the complete devil's staircase, Phys. Rev. Lett. 49:249 (1982).

    Google Scholar 

  15. S. Aubry, Exact models with a complete devil's staircase, J. Phys. C16:2497 (1983).

    Google Scholar 

  16. R. B. Griffiths, Frenkel-Kontorova models of commensurate-incommensurate phase transitions, in Fundamental Problems in Statistical Mechanics VII, H. van Beijeren, ed. (Elsevier, Amsterdam, 1990).

    Google Scholar 

  17. R. M. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math. 12:177 (1971).

    Google Scholar 

  18. S. Mozes, Tilings, substitutions, and dynamical systems generated by them, J. d'Analyse Math. 53:139 (1989).

    Google Scholar 

  19. B. Grünbaum and G. C. Shephard, Tilings and Patterns (Freeman, New York, 1986).

    Google Scholar 

  20. M. Senechal, Quasicrystals and Geometry (Cambridge University Press, 1995).

  21. C. Radin, Tiling, periodicity, and crystals, J. Math. Phys. 26:1342 (1985).

    Google Scholar 

  22. C. Radin, Crystals and quasicrystals: a lattice gas model, Phys. Lett. 114A:381 (1986).

    Google Scholar 

  23. J. Miękisz and C. Radin, The unstable chemical structure of the quasicrystalline alloys, Phys. Lett. 119A:133 (1986).

    Google Scholar 

  24. J. Miękisz, Quasicrystals—Microscopic Models of Nonperiodic Structures (Leuven, Lecture Notes in Mathematical and Theoretical Physics, Vol. 5, Leuven University Press, 1993).

  25. W. Holsztynski and J. Slawny, Peierls condition and number of ground states, Commun. Math. Phys. 61:177 (1978).

    Google Scholar 

  26. J. Slawny, Low temperature properties of classical lattice systems: Phase transitions and phase diagrams, in Phase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987).

    Google Scholar 

  27. C. Radin and L. S. Schulmann, Periodicity and classical ground states, Phys. Rev. Lett. 51:621 (1983).

    Google Scholar 

  28. J. Miękisz and C. Radin, Third law of thermodynamics, Mod. Phys. Lett. 1B:61 (1987).

    Google Scholar 

  29. J. Miękisz, A global minimum of energy is not always a sum of local minima—a note on frustration, J. Stat. Phys. 71:425 (1993).

    Google Scholar 

  30. R. Penrose, Tilings and quasi-crystals; a non-local growth problem? in Introduction to the Mathematics of Quasicrystals Vol. 2 of Aperiodicity and Order, M. V. Jaric, ed. (Academic Press, 1989).

  31. F. Gähler and H-C. Jeong, Quasicrystalline ground states without matching rules, J. Phys. A: Math. Gen. 28:1807 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miekisz, J. An Ultimate Frustration in Classical Lattice-Gas Models. Journal of Statistical Physics 90, 285–300 (1998). https://doi.org/10.1023/A:1023264004272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023264004272

Navigation