Skip to main content
Log in

Gelation and Cluster Growth with Cluster-Wall Interactions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Metallic cluster growth within a reactive polymer matrix is modeled by augmenting coagulation equations to include the influence of side reactions of metal atoms with the polymer matrix: \(\left\{ \begin{gathered} {\kern 1pt} \dot c_j = \frac{1}{2}\,\,\sum\limits_{k\, = \,1}^{j\, - \,1} {\,\,R_{j\, - \,k,\,\,k} c_k c_{j\; - k} - c_j } \,\sum\limits_{k\, = \,1}^x {\,\,R_{jk} } c_k - \delta _{1j} \lambda c_j p,{\text{ }}j = 1,\,2,... \hfill \\ \dot p = - \lambda c_1 p \hfill \\ \end{gathered} \right.\) where λ > 0 and where c k denotes the concentration of the kth cluster and p denotes the concentration of reactive sites available within the polymer matrix for reaction with metallic atoms. The initial conditions are required to be non-negative and satisfy \(\sum\nolimits_{j\, = \,1}^\infty {\,jc_j } (0) = 1\) and p(0) = p 0. We assume that \(R_{jk} = [dj^\alpha k^\alpha + (j + k)(j^\alpha + k^\alpha )]/(d + j + k)\) for 0≤α≤1, which encompasses both bond linking kernels (R jk = j α k α) and surface reaction kernels (R jk = j α + k α). Our analytical and numerical results indicate that the side reactions delay gelation in some cases and inhibit gelation in others. We provide numerical evidence that gelation occurs for the classical coagulation equations (λ = 0) with the bond linking kernel (d → ∞) for 1/2<α≤1. We examine the relative fraction of metal atoms, which coagulate compared to those which interact with the polymer matrix, and demonstrate in particular a linear dependence on λ−1 in the limiting case R = jk , p 0=1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. L. Drake, A general mathematical survey of the coagulation equation. Topics in Current Aerosol Research, Part 2 3:201-376 (1972).

    Google Scholar 

  2. S. K. Friedlander, Smoke, Dust and Haze (Wiley-Interscience, New York, 1972).

    Google Scholar 

  3. G. Odian, Principles of Polymerization (Wiley-Interscience, 1981).

  4. R. M. Ziff, Kinetics of polymerization, J. of Statistical Physics 23:241-263 (1980).

    Google Scholar 

  5. M. V. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetic kolloider Losunger. Z. Phys. Chem. 92:129-168 (1917).

    Google Scholar 

  6. P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, New York, 1953).

    Google Scholar 

  7. O. Penrose, Statistical mechanics and the kinetics of phase separation, in Material Instabilities in Continuous Mechanics and Related Mathematical Problems, pp. 373-394 (Clarendon Press, Oxford, 1988).

    Google Scholar 

  8. J. M. Ball and J. Carr, The discrete coagulation-fragmentation equations: Existence, uniqueness and density conservation, J. of Statistical Physics, pp. 1-37 (1989).

  9. R. Tannenbaum, E. P. Goldberg, and C. L. Flenniken, Decomposition of iron carbonyls in solid polymer matrices: Preparation of novel metal-polymer composites, Metalcontaining Polymeric Systems, pp. 303-339 (1985).

  10. R. Tannenbaum, E. P. Goldberg, and C. L. Flenniken, The solid-state decomposition and oxidation of dicobaltoctacarbonyl in a polymer matrix, Journal of Polymer Science: Part B: Polymer Physics 25:1341-1358 (1987).

    Google Scholar 

  11. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry (Wiley Interscience, New York, 1988).

    Google Scholar 

  12. M. V. Smoluchowski, Drei vortrage uber diffusion, brownsche bewegung und koagulation von kolloidteilchen, Physik. Z. 17:557-585 (1916).

    Google Scholar 

  13. F. Leyvraz and H. R. Tschudi, Singularities in the kinetics of coagulation processes, J. Phys. A: Math. Gen. 14:3389-3405 (1981).

    Google Scholar 

  14. J. B. McLeod, On an infinite set of non-linear differential equations i, Quart. J. Math. Oxford (2) 13:119-128 (1962).

    Google Scholar 

  15. E. M. Hendriks, M. H. Ernst, and R. M. Ziff, Coagulation equations with gelation, J. of Statistical Physics 31(3):519-563 (1983).

    Google Scholar 

  16. F. Leyvraz and H. R. Tschudi, Critical kinetics near gelation, J. Phys. A: Math. Gen. 15:1951-1964 (1982).

    Google Scholar 

  17. H. Rotstein, Coagulation Equations and Gelation with Cluster-Walls Interactions, M.Sc. Thesis, Department of Mathematics, Technion, HT, 1994.

    Google Scholar 

  18. W. H. White, A global existence theorem for smoluchowski's coagulation equations, Proceedings of the American Mathematical Society 80:273-276 (1980).

    Google Scholar 

  19. K. Rektoris, Survey of Applicable Mathematics (Hiffe Book, London, 1969).

    Google Scholar 

  20. R. M. Ziff, E. M. Hendriks, and M. H. Ernst, Critical properties for gelation: A kinetic approach, Physical Review Letters 49(8):593-595 (1982).

    Google Scholar 

  21. P. G. J. van Dongen and M. H. Ernst, On the occurrence of a gelation transition in smoluchowski's coagulation equation, J. of Statistical Physics 44(5/6):785-792 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotstein, H.G., Novick-Cohen, A. & Tannenbaum, R. Gelation and Cluster Growth with Cluster-Wall Interactions. Journal of Statistical Physics 90, 119–143 (1998). https://doi.org/10.1023/A:1023247500637

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023247500637

Navigation