Skip to main content
Log in

Dirichlet Forms and Dirichlet Operators for Gibbs Measures of Quantum Unbounded Spin Systems: Essential Self-Adjointness and Log-Sobolev Inequality

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For each γ ∈ [0, 1] we consider the Dirichlet form ℰ\(_\mu ^\gamma\) and the associated Dirichlet operator \(H_\mu ^\gamma\) for the Gibbs measure μ of quantum unbounded spin systems interacting via superstable and regular potential. The Gibbs measure μ is related to the Gibbs state of the system via a (functional) Euclidean integral procedure. The configuration space for the spin systems is given by \(\Omega : = E^{\mathbb{Z}^v } ,\) \(E: = \left\{ {\omega \in C\left( {\left[ {0,1} \right];\mathbb{R}^d } \right):\omega \left( 0 \right) = \omega \left( 1 \right)} \right\}.\) We formulate Dirichlet forms in the framework of rigged Hilbert spaces which are related to the space Ω. Under appropriate conditions on the potential, we show that the Dirichlet operator \(H_\mu ^{\left( \gamma \right)}\) is essentially self-adjoint on the domain of smooth cylinder functions. We give sufficient conditions on the potential so that the corresponding Gibbs measure is uniformly log-concave (ULC). This property gives the spectral gap of the Dirichlet operator \(H_\mu ^{\left( \gamma \right)}\) at the lower end of the spectrum. Furthermore, we prove that under the conditions of (ULC), the unique Gibbs measure μ satisfies the log-Sobolev inequality (LS). We use an approximate argument used in the study of the same subjects for loop spaces, which in turn is a modification of the method originally developed by S. Albeverio, Yu. G. Kondratiev, and M. Röckner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Albeverio and R. Høegh-Krohn, Homogeneous random fields and statistical mechanics, J. Funct. Anal. 19:242-272 (1975).

    Google Scholar 

  2. S. Albeverio and R. Høegh-Krohn, Dirichlet forms and diffusion processes on rigged Hilbert spaces, Z. Wahrsch. verw. Geb. 40:1-57 (1977).

    Google Scholar 

  3. S. Albeverio and R. Høegh-Krohn, Hunt processes and analytic potential theory on rigged Hilbert spaces, Ann. Inst. Henri Poincare Sect. B 13:269-291 (1977).

    Google Scholar 

  4. S. Albeverio, R. Høegh-Krohn, and L. Streit, Energy forms, Hamiltonians and distorted Brownian paths, J. Math. Phys. 18(5):907-917 (1977).

    Google Scholar 

  5. S. Albeverio, Yu. G. Kondratiev, and M. Röckner, An approximate criterium of essential self-adjointness of Dirichlet operators, Potential Anal. 1:307-317 (1992).

    Google Scholar 

  6. S. Albeverio, Yu. G. Kondratiev, and M. Röckner, Addendum to the paper “An approximate criterium of essential self-adjointness of Dirichlet operators,” Potential Anal. 2:195-198 (1993).

    Google Scholar 

  7. S. Albeverio, Yu. G. Kondratiev, and M. Röckner, Dirichlet operators via stochastíc anaysis, J. Funct. Anal. 128(1):102-138 (1995).

    Google Scholar 

  8. S. Albeverio, Yu. G. Kondratiev, and M. Röckner, Ergodicity of L 2-semigroups and extremality of Gibbs states, BiBoS Print, 1995.

  9. S. Albeverio, Yu. G. Kondratiev, M. Röckner, and T. V. Tsikalenko, Uniqueness of Gibbs states for quantum lattice systems, SFB 343 Preprint, No. 96-022.

  10. S. Albeverio, Yu. G. Kondratiev, and T. V. Tsikalenko, Stochastic dynamics for quantum lattice systems and stochastic quantization I: Ergodicity, Random Oper. and Stoch. Equ. 2(2):103-139 (1994).

    Google Scholar 

  11. S. Albeverio and M. Röckner, Classical Dirichlet forms on topological vector spaces—Closability and a Cameron-Martin formula, J. Funct. Anal. 88:395-436 (1990).

    Google Scholar 

  12. S. Albeverio and M. Röckner, Classical Dirichlet forms on topological vector spaces—The construction of the associated diffusion processes, Prob. Th. and Rel. Fields 83:405-434 (1989).

    Google Scholar 

  13. S. Albeverio, M. Röckner, and T. S. Zhang, Markov uniqueness and its applications to martingale problems, stochastic differential equations, and stochastic quantization, C. R. Math. Rep. Acad. Sci. Canada XV:1-6 (1993).

    Google Scholar 

  14. S. Albeverio, M. Röckner, and T. S. Zhang, Markov uniqueness for a class of infinite dimensional Dirichlet operators, in Stochastic processes and optimal control, Stochastic Monographs 7, H. J. Engelbert et al., eds., (Gordon & Breach, 1993).

  15. V. S. Barbulyak and Yu. G. Kondratiev, Functional Integral and Quantum Lattice Systems: I. Existence of Gibbs States, Reports Nat. Acad. Sci. of Ukraine 8:31-34, 1991.

    Google Scholar 

  16. V. S. Barbulyak and Yu. G. Kondratiev, Functional Integral and Quantum Lattice Systems: III. Phase Transitions, Reports Nat. Acad. Sci. of Ukraine 10:19-21, 1991.

    Google Scholar 

  17. Yu. M. Berezansky, Self-Adjoint Operators in Spaces of Functions of Infinitely Many Variables, Transl. Math. Monographs, Vol. 63, Amer. Math. Soc. (Providence, RI, 1986).

    Google Scholar 

  18. Yu. M. Berezansky and Yu. G. Kondratíev, Spectral Methods in Infinite Dimensional Analysis (Naukova Dumka, Kiev, 1988); English transl.: (Kluwer, Boston, 1993).

    Google Scholar 

  19. Ph. Choquard, The Anharmonic Crystals (Benjamin, New York, 1967).

    Google Scholar 

  20. J. D. Deuschel and D. W. Stroock, Large Deviations (Academic Press, Boston, 1989).

    Google Scholar 

  21. M. Fukushima, Dirichlet Forms and Markov Processes (North-Holland, Amsterdam/Oxford/New York, 1980).

    Google Scholar 

  22. H. O. Georgii, Gibbs measures and Phase Transitions, de Gruyter studies in Mathematics 9 (Berlin/New York, 1988).

  23. L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97:1061-1083 (1975).

    Google Scholar 

  24. R. Holly and D. Stroock, Logarithmic Sobolev inequalities and stochastic Ising models, J. Stat. Phys. 46:1159-1194 (1984).

    Google Scholar 

  25. Yu. G. Kondratiev, Phase Transitions in Quantum Models of Ferroelectrics, in Stochastic Processes, Physics, and Geometry II (World Scientific, Singapore-New Jersey, 465-475, 1994).

    Google Scholar 

  26. A. Yu. Kondratiev and A. L. Rebenko, Some remarks about cluster expansions for unbounded continuous spin systems in quantum statistical mechanics, BiBoS Preprint No. 697, 1995.

  27. Yu. G. Kondratiev and T. V. Tsycalenko, Infinite-dimensional Dirichlet operators I: Essential self-adjointness and associated elliptic equations, Potential Anal. 2:1-21 (1993).

    Google Scholar 

  28. H.-H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Mathematics 463 (Springer-Verlag, 1975).

  29. S. Kusuoka, Dirichlet forms and diffusion processes on Banach spaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29:79-95 (1982).

    Google Scholar 

  30. J. L. Lebowitz and E. Presutti, Statistical mechanics of unbounded spins, Commun. Math. Phys. 50:195-218 (1976).

    Google Scholar 

  31. H. Y. Lim, Y. M. Park, and H. J. Yoo, Dirichlet forms, Dirichlet operators, and log-Sobolev inequalities for Gibbs measures of classical unbounded spin systems, J. Korean Math. Soc. 34(3):731-770 (1997).

    Google Scholar 

  32. H. Y. Lim, Y. M. Park, and H. J. Yoo, Dirichlet forms and diffusion processes related to quantum unbounded spin systems, J. Korean Math. Soc. 33(4):823-855 (1996).

    Google Scholar 

  33. G. Leha and G. Ritter, On diffusion processes and their semigroups in Hilbert spaces with an application to interacting stochastic systems, Ann. Prob. 12:1077-1112 (1984).

    Google Scholar 

  34. Z. M. Ma and M. Röckner, An Introduction to the Theory of (non-symmetric) Dirichlet forms (Springer-Verlag, Berlin/Heidelberg/New York, 1992).

    Google Scholar 

  35. Y. M. Park and H. J. Yoo, A characterization of Gibbs states of lattice boson systems, J. Stat. Phys. 75(1/2):215-239 (1994).

    Google Scholar 

  36. Y. M. Park and H. J. Yoo, Uniqueness and clustering properties of Gibbs states for classical and quantum unbounded spin systems, J. Stat. Phys. 80(1/2):223-271 (1995).

    Google Scholar 

  37. Y. M. Park and H. J. Yoo, Dirichlet operators for Gibbs measures on loop spaces: Essential self-adjointness and log-Sobolev inequality, J. Math. Phys. 38(6):3321-3346 (1997).

    Google Scholar 

  38. W. Rudin, Principles of Mathematical Analysis, 2nd ed. (McGraw-Hill Book Company, New York, 1964).

    Google Scholar 

  39. M. Röckner, General theory of Dirichlet forms and applications, in Dirichlet Forms, G. Dell' Antonio and U. Mosco, eds., Lecture Notes in Mathematics 1563:129-174 (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  40. O. S. Rothaus, Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities, J. Funct. Anal. 42:102-109 (1981).

    Google Scholar 

  41. D. Ruelle, Probability estimates for continuous spin systems, Commun. Math. Phys. 50:189-194 (1976).

    Google Scholar 

  42. M. Röckner and T. S. Zhang, Uniqueness of generalized Schrödinger operators and applications, J. Funct. Anal. 105:187-231 (1992).

    Google Scholar 

  43. M. Röckner and T. S. Zhang, Uniqueness of generalized Schrödinger operators—Part II. J. Funct. Anal. 119:455-467 (1994).

    Google Scholar 

  44. M. L. Silberstein, Symmetric Markov Processes, Lecture Notes in Mathematics 426 (Springer-Verlag, Berlin, 1974).

    Google Scholar 

  45. B. Simon, A remark on Nelson's best hypercontractive estimates, Proc. Amer. Math. Soc. 55:376-378 (1975).

    Google Scholar 

  46. B. Simon, Functional Integration and Quantum Physics (Academic Press, New York, 1979).

    Google Scholar 

  47. D. W. Stroock and B. Zegarlinski, The logarithmic Sobolev inequality for continuous spin systems on a lattice, J. Funct. Anal. 104:290-326 (1992).

    Google Scholar 

  48. D. W. Stroock and B. Zegarlinski, The equivalence of the logarithmic Sobolev inequality and Dobrushin-Schlosman mixing condition, Commun. Math. Phys. 144:303-323 (1992).

    Google Scholar 

  49. D. W. Stroock and B. Zegarlinski, The logarithmic Sobolev inequalities for discrete spin systems on a lattice, Commun. Math. Phys. 149:175-193 (1992).

    Google Scholar 

  50. M. Takeda, On the uniqueness of Markovian self-adjoint extension of diffusion operators on infinite dimensional space., Osaka J. Math. 22:733-742 (1985).

    Google Scholar 

  51. M. Takeda, On the Uniqueness of Markovian Self-Adjoint Extension, in Lecture Notes in Math. (Stochastic processes-Mathematics and Physics) 1250:319-325 (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  52. M. Takeda, The maximum Markovian self-adjoint extensions of generalized Schrödinger operators, J. Math. Soc. Japan, 44:113-130 (1992).

    Google Scholar 

  53. N. Wielens, On the essential self-adjointness of generalized Schrödinger operators, J. Funct. Anal. 61:98-115 (1985).

    Google Scholar 

  54. S. Albeverio, Yu. G. Kondratiev, M. Röckner, and T. V. Tsikalenko, Dobrushin's uniqueness for quantum lattice systems with nonlocal interaction, Preprint.

  55. J. Bellissard and R. Høegh-Krohn, Compactness and the maximal Gibbs state for random fields on a lattice, Commun. Math. Phys. 84:297-327 (1982).

    Google Scholar 

  56. J. D. Deuschell and D. W. Stroock, Hypercontractivity and spectral gap of symmetric diffusions with applications to the stochastic Ising model, J. Funct. Anal. 92:30-48 (1990).

    Google Scholar 

  57. S. L. Lu and H.-T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Commun. Math. Phys. 156:399-433 (1993).

    Google Scholar 

  58. F. Martinelli and E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region, I and II, Commun. Math. Phys. 161:447-514 (1994).

    Google Scholar 

  59. B. Zegarlinski, The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice, Commun. Math. Phys. 175:401-432 (1996).

    Google Scholar 

  60. D. Ruelle, Superstable interactions in classical statistical mechanics, Commun. Math. Phys. 18:127-159 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, H.Y., Park, Y.M. & Yoo, H.J. Dirichlet Forms and Dirichlet Operators for Gibbs Measures of Quantum Unbounded Spin Systems: Essential Self-Adjointness and Log-Sobolev Inequality. Journal of Statistical Physics 90, 949–1002 (1998). https://doi.org/10.1023/A:1023245508048

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023245508048

Navigation