Skip to main content
Log in

Surface Restructuring, Thermal Desorption, Kinetic Bistability, and Chemical Waves

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Adsorbate-induced surface restructuring is treated in the framework of a statistical lattice-gas model taking into account the possibility of formation of a metastable substrate structure on the clean surface and stabilization of this structure by adsorbate–substrate interaction. With these assumptions, surface restructuring is described in terms of the theory of first-order phase transitions. The proposed model is then employed to analyze (i) the influence of adsorbate-induced changes in the surface on thermal desorption spectra and (ii) the effect of surface restructuring on the propagation of chemical waves in the 2A + B2 → 2AB reaction. The interplay between reaction-diffusion kinetics and surface restructuring is shown to result in formation of chemical waves with atomistically sharp spatial features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. P. Zhdanov, Elementary Physicochemical Processes on Solid Surfaces, Chs. 3.3.2, 3, 5, 4.2, and 5.2 (Plenum, New York, 1991).

    Google Scholar 

  2. H. C. Kang and W. H. Weinberg, Chem. Rev. 95:667 (1995).

    Google Scholar 

  3. W. Rudzinski, W. A. Steele, and G. Zgrablich, eds., Equilibria and Dynamics of Gas Adsorption on Heterogeneous Surfaces, Vol. 104 of Studies in Surface Science and Catalysis (Elsevier, Amsterdam, 1997).

    Google Scholar 

  4. G. A. Somorjai and M. A. Van Hove, Progr. Surf. Sci. 30:201 (1989).

    Google Scholar 

  5. D. A. King and D. P. Woodruff, eds., Phase Transitions and Adsorbate Restructuring at Metal Surfaces, Vol. 7 of The Chemical Physics of Solid Surfaces (Elsevier, Amsterdam, 1994).

    Google Scholar 

  6. M. Bernasconi and E. Tosatti, Surf. Sci. Rep. 17:363 (1993).

    Google Scholar 

  7. M. Den Nijs, Roughening and Preroughening, and Reconstruction Transitions in Crystal Surfaces (in D. P. Woodruff, eds., Phase Transitions and Adsorbate Restructuring at Metal Surfaces, Vol. 7 of The Chemical Physics of Solid Surfaces (Elsevier, Amsterdam, 1994) ref. 5), p. 115.

    Google Scholar 

  8. V. P. Zhdanov and P. R. Norton, Langmuir 12:101 (1996).

    Google Scholar 

  9. K. H. Lau and S. C. Ying, Phys. Rev. Lett. 44:1222 (1980).

    Google Scholar 

  10. T. Inaoka and A. Yoshimori, Surf. Sci. 149:241 (1985).

    Google Scholar 

  11. A. V. Myshlyavtsev and V. P. Zhdanov, Langmuir 9:1290 (1993).

    Google Scholar 

  12. J. C. Campuzano, A. M. Lahee, and G. Jennings, Surf. Sci. 152:68 (1985).

    Google Scholar 

  13. V. P. Zhdanov, Surf. Sci. 277:155 (1992).

    Google Scholar 

  14. M. Canepa, M. Salvietti, M. Traverso, and L. Mattera, Surf. Sci. 333:183 (1995).

    Google Scholar 

  15. G. Ertl, P. R. Norton, and J. Rüstig, Phys. Rev. Lett. 49:177 (1982).

    Google Scholar 

  16. R. Imbihl, M. P. Cox, G. Ertl, H. Müller, and W. Brenig, J. Chem. Phys. 83:1578 (1985).

    Google Scholar 

  17. P. Möller, K. Wetzl, M. Eiswirth, and G. Ertl, J. Chem. Phys. 85:5328 (1986).

    Google Scholar 

  18. F. Schuth, B. F. Henry, and L. D. Schmidt, Adv. Catal. 39:51 (1993).

    Google Scholar 

  19. R. Imbihl and G. Ertl, Chem. Rev. 95:697 (1995).

    Google Scholar 

  20. V. P. Zhdanov and B. Kasemo, Surf. Sci. Rep. 20:111 (1994).

    Google Scholar 

  21. E. V. Albano, Heter. Chem. Rev. 3:389 (1996).

    Google Scholar 

  22. V. P. Zhdanov, Surf. Sci. 164:L807 (1985).

    Google Scholar 

  23. V. A. Sobyanin and V. P. Zhdanov, Surf. Sci. 181:L163 (1987).

    Google Scholar 

  24. R. F. S. Andrade, G. Dewel, and P. Borckmans, J. Chem. Phys. 91:2675 (1989); R. F. S. Andrade, D. Lima, G. Dewel, and P. Borkmans, J. Chem. Phys. 100:9192 (1994).

    Google Scholar 

  25. V. Gorodetkkii, J. Lauterbach, H.-H. Rotermund, J. H. Block, and G. Ertl, Nature 370:276 (1994).

    Google Scholar 

  26. R. J. Behm, P. A. Thiel, P. R. Norton, and G. Ertl, J. Chem. Phys. 78:7437 (1983).

    Google Scholar 

  27. M. A. Morris, M. Bowker, and D. A. King, in Simple Processes at the Gas-Solid Interface, Vol. 19 of Comprehensive Chemical Kinetics, p. 163, C. H. Bamford, C. F. H. Tipper, and R. G. Compton, eds. (Elsevier, Amsterdam, 1984).

    Google Scholar 

  28. A. V. Myshlyavtsev and V. P. Zhdanov, J. Chem. Phys. 92:3909 (1990).

    Google Scholar 

  29. A. Hopkinson, X. C. Guo, J. M. Bradley, and D. A. King, J. Chem. Phys. 99:8262 (1993).

    Google Scholar 

  30. A. T. Pasteur, S. J. Dixon-Warren, and D. A. King, J. Chem. Phys. 103:2251 (1995).

    Google Scholar 

  31. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon, Oxford, 1981).

    Google Scholar 

  32. J. D. Gunton, M. S. Miguel, and P. S. Sahni, in Phase Transitions and Critical Phenomena, Vol. 8, p. 267, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Zhdanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhdanov, V.P., Kasemo, B. Surface Restructuring, Thermal Desorption, Kinetic Bistability, and Chemical Waves. Journal of Statistical Physics 90, 79–101 (1998). https://doi.org/10.1023/A:1023243432497

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023243432497

Navigation