Skip to main content
Log in

The Discrete N-Vector Ferromagnet: Connection to a Percolation with Frustration Features

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We extend the Kasteleyn–Fortuin formalism to the discrete N-vector ferromagnet. We show that the free energy and the correlation functions of this model are related, when the number of states tends to 1, to the mean number of clusters and to the pair connectedness of a polychromatic bond percolation type problem which combines frustration and connectivity features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. W. Kasteleyn and C. M. Fortuin, Phase transitions in lattice systems with random local properties, J. Phys. Soc. Jpn. Suppl. 26:11-14 (1969); C. M. Fortuin and P. W. Kasteleyn, On the random-cluster model: I. Introduction and relation to other models, Physica (Utrecht) 57:536–564 (1972).

    Google Scholar 

  2. M. J. Stephen, Percolation problems and the Potts model, Phys. Lett. 56A:149-150 (1976); Site-cluster distributions and equation of state for the bond percolation model, Phys. Rev. B15:5674–5680 (1977).

    Google Scholar 

  3. M. R. Giri, M. J. Stephen, and G. S. Grest, Spin models and cluster distributions for bond and site percolation models, Phys. Rev. B 16:4971-4977 (1977).

    Google Scholar 

  4. H. Kunz and F. Y. Wu, Site percolation as a Potts model, J. Phys. C 11:L1-L4 (1978).

    Google Scholar 

  5. F. Y. Wu, Percolation and the Potts model, J. Stat. Phys. 18:115-123 (1978).

    Google Scholar 

  6. K. K. Murata, Hamiltonian formulation of the site percolation in a lattice gas, J. Phys. A 12:81-89 (1979).

    Google Scholar 

  7. A. Coniglio and W. Klein, Clusters and Ising critical droplets: A renormalization group approach, J. Phys. A 13:2775-2780 (1980); A. Coniglio and F. Peruggi, Cluster and droplets in the q-state Potts model, J. Phys. A 15:1873–1883 (1982).

    Google Scholar 

  8. J. W. Essam and C. Tsallis, The Potts model and flows: I. The pair correlation function, J. Phys. A 19:409-422 (1986).

    Google Scholar 

  9. A. C. N. de Magalhães and J. W. Essam, The Potts model anf flows: II. Many-spin correlation function, J. Phys. A 19:1655-1679 (1986).

    Google Scholar 

  10. A. Coniglio, F. de Liberto, G. Monroy, and F. Peruggi, Exact relations between droplets and thermal fluctuations in external field, J. Phys. A 22:L837-L842 (1989).

    Google Scholar 

  11. D. K. Arrowsmith and J. W. Essam, Extension of the Kasteleyn Fortuin formulas to directed percolation, Phys. Rev. Lett. 65:3068-3071 (1990).

    Google Scholar 

  12. A. Coniglio, in Correlations and Connectivity, H. E. Stanley and N. Ostrowsky, eds. (Kluwer Acad. Publ., 1990); A. Coniglio, F. di Liberto, G. Monroy, and F. Peruggi, Cluster approach to spin glasses and the frustrated-percolation problem, Phys. Rev. B 44:R12605 R12608 (1991).

    Google Scholar 

  13. V. Cataudella, A. Coniglio, L. de Arcangelis, and F. di Liberto, Cluster formulation for frustrated spin models, Physica A 192:167-174 (1993); A. Coniglio, Frustrated percolation, spin glasses and glasses, Nuovo Cimento 16D:1027–1037 (1994).

    Google Scholar 

  14. D. K. Arrowsmith and J. W. Essam, Restricted colourings and flow on graphs and directed percolation, Trends in Stat. Phys. 1:143-152 (1994).

    Google Scholar 

  15. M. Nicodemi, Percolation and cluster formalism in continuous spin systems, Physica A 238:9-22 (1997).

    Google Scholar 

  16. R. H. Swendsen and J. S. Wang, Non universal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett. 58:86-88 (1987); J. S. Wang and R. H. Swendsen, Cluster Monte Carlo algorithms, Physica A 167:565–579 (1990).

    Google Scholar 

  17. V. Cataudella, G. Franzese, M. Nicodemi, A. Scala, and A. Coniglio, Critical clusters and efficient dynamics for frustrated spin models, Phys. Rev. Lett. 72:1541-1544 (1994); Percolation and cluster Monte Carlo dynamics for spin models, Phys. Rev. E 54:175–189 (1996).

    Google Scholar 

  18. F. Y. Wu, The Potts model, Rev. Mod. Phys. 54:235-268 (1982).

    Google Scholar 

  19. D. Kim, P. M. Levy, and L. F. Uffer, Cubic rare-earth compounds: variants of the three-state Potts model, Phys. Rev. B 12:989-1004 (1975).

    Google Scholar 

  20. E. Domany and E. K. Riedel, Phase transitions in two-dimensional systems, Phys. Rev. Lett. 40:561-564 (1978).

    Google Scholar 

  21. A. B. Harris and A. J. Berlinsky, Mean field theory of the orientational properties of (J = 1) hydrogen molecules on the surface of grafoil, Can. J. Phys. 57:1852-1869 (1979).

    Google Scholar 

  22. J. Eckert, W. D. Ellenson, J. B. Hastings, and L. L. Passel, Neutron scattering as a probe of orientational ordering of Nitrogen molecules on graphite, Phys. Lett. 43:1329-1332 (1979).

    Google Scholar 

  23. A. Aharony, Critical behaviour of the discrete spin cubic model, J. Phys. A 10:389-398 (1977).

    Google Scholar 

  24. A. C. N. de Magalhães and J. W. Essam, The n-component cubic model and flows: Subgraph break-collapse method, J. Stat. Phys. 58:1059-1082 (1990).

    Google Scholar 

  25. H. J. Hilhorst, Renormalization of the self avoiding walk on a lattice, Phys. Lett. 56A:153-154 (1976); Real-space renormalization of the self-avoiding walk by a linear transformation, Phys. Rev. B 16:1253–1265 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Magalhães, A.C.N., Mariz, A.M. The Discrete N-Vector Ferromagnet: Connection to a Percolation with Frustration Features. Journal of Statistical Physics 90, 827–851 (1998). https://doi.org/10.1023/A:1023233205322

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023233205322

Navigation